/usr/include/freehdl/kernel-db.hh is in libfreehdl0-dev 0.0.8-2.2ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 | #ifndef FREEHDL_KERNEL_DB_H
#define FREEHDL_KERNEL_DB_H
#include <assert.h>
/* This header file includes the definitions that are required to
* setup a kernel database. This database will be used by the kernel
* to store information. Each chunk of information is associated with
* a key. The key as well as the type and name of information are not
* necessarily kown to the database at compile time. E.g., new key
* types as well as new data types can be added without recompiling or
* rebuilding the database. Here is an short example on how to add and
* use the database:
// These are macro calls so DO NOT INSERT ANY SPACE BETWEEN ".._type"
// AND "("!!!
// First, we define a key that is used to store an item in the data
// base. Here, the macro creates an item db_key_type::sig_key that
// references the corresponding key type. Note that db_key_type is a
// namespace.
define_db_key_type(sig_info_base*, sig_key);
// Next, define two data types that shall be actually stored. Here the
// macro creates a new item db_entry_type::sig_name and associates it
// with the data type string. Further, a new struct is defined and
// also prepared for storing to the database. Note that db_entry_type is
// a namespace.
define_db_entry_type(string, sig_name);
// A structure shall be stored in the database
struct driver_data {
int driver_count;
bool is_resolved;
};
define_db_entry_type(driver_data, driver_data_entry)
// Now, create an database explorer instance. The database explorer is
// used to search and manipulate the database. The explorer is
// associated with the corresponding database (here: kernel_db) at
// construction. Note that we must define the data kind we are
// interested in as a template parameter to db_explorer.
db_explorer<db_key_type::sig_key, db_entry_type::sig_name> sig_info_ext (kernel_db);
// Now we can create and reference an entry. The following code will
// associate a_siginfo_pointer with an database entry
// db_entry_type::sig_name which stores the value "test". Note that
// get will automatically create an corresponding entry if the current
// a_siginfo_pointer value is not associated with this entry kind.
sig_info_ext.get (a_siginfo_pointer) = "test";
// Another explorer is created that can be used to access
// driver_data_entry. Note that an separate explorer instance must be
// used for each data entry type!
db_explorer<db_key_type::sig_key, db_entry_type::driver_data_entry>
sig_info_driver_ext (kernel_db);
sig_info_driver_ext.get (a_siginfo_pointer).is_resolved = true;
sig_info_driver_ext.get (a_siginfo_pointer).driver_count = 0;
// For other ways to access/query the databse see the db_explorer
// class.
*/
/******************************************************
* Some definitions which are used by the kernel only
******************************************************/
#ifdef KERNEL
#include <vector>
#include <freehdl/kernel-util.hh>
#if !defined __GNUC__ || __GNUC__ != 2
#include <ext/hash_map>
#else
#include <hash_map>
#endif
// Macro used to define a key type. K is the actual type of the key
// while N is his name that will be used within the kernel
// database. Note that N is created in namespace db_key_type. Hence,
// to reference it use db_key_type::N.
#define define_db_key_type(K,N) \
namespace db_key_type \
{ \
struct __kernel_db_key_type__ ## N { typedef K key_type; \
static string get_name () { return # N; } }; \
typedef db_key_kind<__kernel_db_key_type__ ## N> N; \
}
// Macro used to define a database entry type. K is the type (as
// defined by define_db_key_type, while T is the type of the data
// entry and N is his name that will be used to identify the data
// entry type. Note that N is created in namespace
// db_entry_type. Hence, to reference it use db_entry_type::N.
#define define_db_entry_type(T,N) \
namespace db_entry_type \
{ \
struct __kernel_db_entry_type__ ## N { typedef T data_type; \
static string get_name () { return # N; } }; \
typedef db_entry_kind<T, __kernel_db_entry_type__ ## N> N; \
} \
// Base class to derive all key kind classes from
class db_key_kind_base
{
public:
virtual ~db_key_kind_base() {};
virtual string get_name () = 0;
};
// The actual key kind class. This class represents the correponding
// key type. Key is the key type. This class is a singleton.
template<class Key>
class db_key_kind : public db_key_kind_base
{
private:
static db_key_kind *single_instance;
public:
static db_key_kind *get_instance ()
{
if (single_instance == NULL)
single_instance = new db_key_kind;
return single_instance;
}
protected:
db_key_kind () { };
public:
// Get name of key.
string get_name () { return Key::get_name (); }
typedef db_key_kind_base kind_base_type;
typedef typename Key::key_type key_type;
};
template<class Key>
db_key_kind<Key> *db_key_kind<Key>::single_instance = NULL;
// From the following class all entry kind classes are derived.
class db_entry_kind_base
{
public:
virtual ~db_entry_kind_base() {};
virtual string get_name () = 0;
};
// The actual entry kind class. This class represents the correponding
// database entry kind. This class is a singleton. T is the type of
// the data entry. N is the name of this data kind.
template<class T, class N>
class db_entry_kind : public db_entry_kind_base
{
private:
static db_entry_kind *single_instance;
public:
static db_entry_kind *get_instance ()
{
if (single_instance == NULL)
single_instance = new db_entry_kind;
return single_instance;
}
protected:
db_entry_kind () { };
public:
// Get name of database entry.
string get_name () { return N::get_name (); }
typedef T data_type;
typedef db_entry_kind_base kind_base_type;
};
template<class T,class N>
db_entry_kind<T,N> *db_entry_kind<T,N>::single_instance = NULL;
// Base class for all db_entry classes. THe class stores a pointer to
// the corresponding db_entry_kind.
class db_entry_base
{
public:
virtual ~db_entry_base() {};
const db_entry_kind_base *kind;
virtual string get_name () = 0;
db_entry_base (db_entry_kind_base *k) : kind (k) { };
};
// This is the class that is used to store the database data. kind is
// the db_entry_kind associated with this entry.
template<class entry_kind>
class db_entry : public db_entry_base
{
public:
typename entry_kind::data_type data;
string get_name () { return entry_kind::get_instance () -> get_name (); }
db_entry () : db_entry_base (entry_kind::get_instance ()) { };
};
class db_basic_key
{
public:
void *value;
bool operator == (const db_basic_key &k) const { return value == k.value; }
db_basic_key (void *v) { value = v; }
};
// The database base class. Defines a set of common interfaces that
// must be implemented by all databases.
class db_base
{
public:
virtual ~db_base() {};
typedef pair<db_key_kind_base*, vector<db_entry_base*> > db_key_entry_pair;
// Checks whether there is a entry in the database assoicated with
// key.
virtual bool is_in_database (db_basic_key key) = 0;
// Looks up en entry in the database. Note that this method must not
// be used if there is no entry associated with key.
virtual db_key_entry_pair &find (db_basic_key key) = 0;
// Same as find however, a new entry is created if key is not
// present in database.
virtual db_key_entry_pair &find_create (db_basic_key key, db_key_kind_base *key_kind) = 0;
// Creates a new entry with key key and associates entry data dbe
// with it.
virtual db_entry_base *add_entry (db_basic_key key, db_key_kind_base *key_kind, db_entry_base *dbe) = 0;
// Erase entry vom the database. The entry is defined by key and the
// data entry index i. Note that there may be several entries
// associated with key.
virtual bool erase (db_basic_key key, int i) = 0;
// Return number of keys stored in database.
virtual int key_count () const = 0;
};
// A hash function template used tp generate a hash number from
// d
class db_basic_key_hash : public hash<unsigned long> {
public:
size_t operator()(const db_basic_key& x) const {
return (*(hash<unsigned long> *)this)(((unsigned long)x.value)>>2);
}
};
// The acutal database definiton
class db : public db_base
{
// This mappes is the actual database.
typedef hash_map<void*, db_key_entry_pair, db_basic_key_hash> db_data_map_type;
db_data_map_type data_map;
// The transaction id is incremented each time a new key is added or
// a key is removed.
long long int transaction_id;
public:
db () : transaction_id (0) {};
// Some methods used to walk through the keys stored in the database.
class key_iterator
{
db_data_map_type::iterator iter;
public:
key_iterator () { }
key_iterator (const db_data_map_type::iterator i) { iter = i; }
key_iterator &operator ++ () { iter++; return *this; }
key_iterator operator ++ (int)
{
key_iterator tmp = *this;
iter++;
return tmp;
}
bool operator == (const key_iterator i) const { return iter == i.iter; }
bool operator != (const key_iterator i) const { return iter != i.iter; }
db_basic_key operator * () const { return db_basic_key (iter->first); }
};
key_iterator begin () { return key_iterator (data_map.begin ()); }
key_iterator end () { return key_iterator (data_map.end ()); }
// Return number of keys stored in database.
int key_count () const { return data_map.size (); }
// Checks whether there is a entry in the database assoicated with
// key.
bool is_in_database (db_basic_key key)
{
return data_map.find (key.value) != data_map.end ();
}
// Looks up en entry in the database. Note that this method must not
// be used if there is no entry associated with key.
db_key_entry_pair &find (db_basic_key key)
{
db_data_map_type::iterator iter = data_map.find (key.value);
assert (iter != data_map.end ());
return iter->second;
}
// Same as find however, a new entry is created if key is not
// present in database.
db_key_entry_pair &find_create (db_basic_key key, db_key_kind_base *key_kind)
{
if (! is_in_database (key))
{
data_map [key.value] = db_key_entry_pair (key_kind, vector<db_entry_base*> ());
// Increment transaction id to mark that a key has been
// added or removed.
transaction_id ++;
}
db_data_map_type::iterator iter = data_map.find (key.value);
return iter->second;
}
// Creates a new entry key and associates entry data dbe with it.
db_entry_base *add_entry (db_basic_key key, db_key_kind_base *key_kind, db_entry_base *dbe)
{
vector<db_entry_base*> &vec = find_create (key, key_kind).second;
vec.push_back (dbe);
return vec.back ();
}
// Erase entry vom the database. The entry is defined by key and the
// data entry index i. Note that there may be several entries
// associated with key. If there is no entry left, then the
// corresponding key is also removed from the database.
bool erase (db_basic_key key, int i)
{
db_data_map_type::iterator iter = data_map.find (key.value);
if (iter == data_map.end ()) return false;
vector<db_entry_base*> &vec = iter->second.second;
if (vec [i] != NULL)
delete vec [i];
vec.erase (vec.begin () + i);
if (vec.size () == 0)
{
data_map.erase (iter);
// Increment transaction id to mark that a key has been
// added or removed.
transaction_id ++;
}
return true;
}
};
// Operator class used to control the search operation of the database.
template<class K>
class exact_match {
public:
bool operator () (const typename K::kind_base_type *a, const typename K::kind_base_type *b)
{
return a == b;
}
};
// Operator class used to control the search operation of the database.
template<class K>
class match_all {
public:
bool operator () (const typename K::kind_base_type *a, const typename K::kind_base_type *b)
{
return true;
}
};
// Template used to cast a key to void*. Note that the actual core
// database uses void* as keys.
template<class K>
class default_key_mapper
{
public:
db_basic_key convert_to_basic_key (const typename K::key_type key) const { return db_basic_key ((void*)key); }
typename K::key_type convert_to_key (db_basic_key p) const { return (typename K::key_type)p.value; }
};
// The database explorer is used to search and manipulate the
// database. The explorer is associated with the corresponding
// database (here: kernel_db) at construction. Note that we must
// define the data kind we are interested in as a template parameter
// to the explorer.
template<class key_kind,
class kind,
class key_mapper = default_key_mapper<key_kind>,
class KM = exact_match<key_kind>,
class DM = exact_match<kind> >
class db_explorer
{
db &database;
// last_index is used to cache the last referenced entry accessed
// with this database explorer.
int last_index;
// Looks up an entry specified by key in the database. Returns NULL
// if no such entry is present (either key in not in the database or
// there is no such entry kind associated with key.
db_entry<kind> *find_entry (const typename key_kind::key_type key)
{
key_mapper keym;
if (! database.is_in_database (keym.convert_to_basic_key (key))) return NULL;
db_base::db_key_entry_pair &hit = database.find (keym.convert_to_basic_key (key));
assert (hit.second.size () > 0);
// Test whether key is assoicates with the correct key type
KM km;
if (!km (key_kind::get_instance (), hit.first)) return NULL;
// Try to check out the last match that was found by the
// explorer. This implements a simple type of cache mechanism to
// speedup lookup operations.
DM m;
if ((unsigned)last_index < hit.second.size () &&
m (kind::get_instance (), hit.second [last_index]->kind ))
{
db_entry<kind> *entry = dynamic_cast<db_entry<kind>*> (hit.second [last_index]);
assert (entry != NULL);
return entry;
}
for (unsigned int i = 0; i < hit.second.size (); i++)
if (m (kind::get_instance (), hit.second [i]->kind ))
{
db_entry<kind> *entry = dynamic_cast<db_entry<kind>*> (hit.second [i]);
assert (entry != NULL);
last_index = i;
return entry;
}
return NULL;
}
public:
db_explorer (db &d) : database (d), last_index (0) { };
// Looks up an entry specified by key in the database. Returns
// pointer to the actual database value. Returns NULL if no such
// entry is present (either key in not in the database or there is
// no such entry kind associated with key.
typename kind::data_type *find (const typename key_kind::key_type key)
{
db_entry<kind> *entry = find_entry (key);
return entry != NULL? &entry->data : NULL;
}
// Looks up an entry specified by key in the database. Returns
// pointer to the actual database value. Returns NULL if no such
// entry is present (either key in not in the database or there is
// no such entry kind associated with key.
typename kind::data_type *find (const db_basic_key key)
{
key_mapper keym;
db_entry<kind> *entry = find_entry (keym.convert_to_key (key));
return entry != NULL? &entry->data : NULL;
}
// Checks whether a key is valid, i.e., actually is a key with the
// correct type.
bool is_valid (const db_basic_key key)
{
key_mapper keym;
db_entry<kind> *entry = find_entry (keym.convert_to_key (key));
return entry != NULL;
}
// Converts basic key to the appropriate key type. Note that no
// error checking is done. I.e., the caller must esure that key
// actually refers to the correct pointer type.
typename key_kind::key_type get_key (db_basic_key key) const
{
key_mapper keym;
return keym.convert_to_key (key);
}
// Same as find but creates an new entry if there is no such entry
// present.
typename kind::data_type *find_create (const typename key_kind::key_type key)
{
db_entry<kind> *entry = find_entry (key);
if (entry == NULL)
{
key_mapper keym;
database.find_create (keym.convert_to_basic_key (key), key_kind::get_instance ());
entry = dynamic_cast<db_entry<kind>*> (database.add_entry (keym.convert_to_basic_key (key),
key_kind::get_instance (),
new db_entry<kind> ()));
}
return &entry->data;
}
typename kind::data_type *find_create (db_basic_key key) { return find_create (get_key (key)); }
// Returns pointer to the corresponding data value.
typename kind::data_type &get (const typename key_kind::key_type key)
{
return *find_create (key);
}
typename kind::data_type &get (db_basic_key key) { return get (get_key (key)); }
// Removes all entries of of kind "kind" that are associated with
// key.
bool erase (const typename key_kind::key_type key)
{
key_mapper keym;
if (! database.is_in_database (keym.convert_to_basic_key (key))) return false;
DM m;
db_base::db_key_entry_pair &hit = database.find (keym.convert_to_basic_key (key));
for (int i = 0; i < hit.second.size (); i++)
if (m (kind::get_instance (), hit.second [i]->kind))
return database.erase (keym.convert_to_basic_key (key), i);
return false;
}
bool erase (db_basic_key key) { return erase (get_key (key)); }
};
// Define a common database key
define_db_key_type(void*, generic_key);
// db_generic_explorer is a special database explorer which does not
// take the key type into account during its operations. I.e., it does
// notcheck whether the key type of a specific entry is consistent
// with the kind parameter of the template. Hence, this explorer is
// NOT ALLOWED to insert any new keys into the database.
template<class kind,
class key_mapper = default_key_mapper<db_key_type::generic_key>,
class DM = exact_match<kind> >
class db_generic_explorer
{
db_explorer <db_key_type::generic_key, kind, key_mapper, match_all<db_key_type::generic_key>, DM > internal_explorer;
public:
db_generic_explorer (db &d) : internal_explorer (d) { };
// Looks up an entry specified by key in the database. Returns
// pointer to the actual database value. Returns NULL if no such
// entry is present (either key in not in the database or there is
// no such entry kind associated with key.
typename kind::data_type *find (const typename db_key_type::generic_key::key_type key)
{
return internal_explorer.find (key);
}
// Looks up an entry specified by key in the database. Returns
// pointer to the actual database value. Returns NULL if no such
// entry is present (either key in not in the database or there is
// no such entry kind associated with key.
typename kind::data_type *find (const db_basic_key key)
{
return internal_explorer.find (key);
}
// Returns pointer to the corresponding data value.
typename kind::data_type &get (const typename db_key_type::generic_key::key_type key)
{
typename kind::data_type *d = internal_explorer.find (key);
assert (d != NULL);
return *d;
}
typename kind::data_type &get (db_basic_key key) { return get (this->get_key (key)); }
};
// The actual kernel database is a singleton pattern.
class kernel_db_singleton : public db
{
private:
static kernel_db_singleton *single_instance;
public:
static kernel_db_singleton *get_instance ()
{
if (single_instance == NULL)
single_instance = new kernel_db_singleton;
return single_instance;
}
protected:
kernel_db_singleton () { };
public:
};
// kernel_db is used to access the kernel database instance.
#define kernel_db (*kernel_db_singleton::get_instance ())
#endif /* ifdef KERNEL */
#endif
|