This file is indexed.

/usr/include/fst/state-table.h is in libfst-dev 1.6.3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Classes for representing the mapping between state tuples and state IDs.

#ifndef FST_LIB_STATE_TABLE_H_
#define FST_LIB_STATE_TABLE_H_

#include <deque>
#include <utility>
#include <vector>

#include <fst/log.h>

#include <fst/bi-table.h>
#include <fst/expanded-fst.h>
#include <fst/filter-state.h>


namespace fst {

// State tables determine the bijective mapping between state tuples (e.g., in
// composition, triples of two FST states and a composition filter state) and
// their corresponding state IDs. They are classes, templated on state tuples,
// with the following interface:
//
// template <class T>
// class StateTable {
//  public:
//   using StateTuple = T;
//
//   // Required constructors.
//   StateTable();
//
//   StateTable(const StateTable &);
//
//   // Looks up state ID by tuple. If it doesn't exist, then add it.
//   StateId FindState(const StateTuple &tuple);
//
//   // Looks up state tuple by state ID.
//   const StateTuple<StateId> &Tuple(StateId s) const;
//
//   // # of stored tuples.
//   StateId Size() const;
// };
//
// A state tuple has the form:
//
// template <class S>
// struct StateTuple {
//   using StateId = S;
//
//   // Required constructors.
//
//   StateTuple();
//
//   StateTuple(const StateTuple &tuple);
// };

// An implementation using a hash map for the tuple to state ID mapping. The
// state tuple T must support operator==.
template <class T, class H>
class HashStateTable : public HashBiTable<typename T::StateId, T, H> {
 public:
  using StateTuple = T;
  using StateId = typename StateTuple::StateId;

  using HashBiTable<StateId, StateTuple, H>::FindId;
  using HashBiTable<StateId, StateTuple, H>::FindEntry;
  using HashBiTable<StateId, StateTuple, H>::Size;

  HashStateTable() : HashBiTable<StateId, StateTuple, H>() {}

  explicit HashStateTable(size_t table_size)
      : HashBiTable<StateId, StateTuple, H>(table_size) {}

  StateId FindState(const StateTuple &tuple) { return FindId(tuple); }

  const StateTuple &Tuple(StateId s) const { return FindEntry(s); }
};

// An implementation using a hash map for the tuple to state ID mapping. The
// state tuple T must support operator==.
template <class T, class H>
class CompactHashStateTable
    : public CompactHashBiTable<typename T::StateId, T, H> {
 public:
  using StateTuple = T;
  using StateId = typename StateTuple::StateId;

  using CompactHashBiTable<StateId, StateTuple, H>::FindId;
  using CompactHashBiTable<StateId, StateTuple, H>::FindEntry;
  using CompactHashBiTable<StateId, StateTuple, H>::Size;

  CompactHashStateTable() : CompactHashBiTable<StateId, StateTuple, H>() {}

  explicit CompactHashStateTable(size_t table_size)
      : CompactHashBiTable<StateId, StateTuple, H>(table_size) {}

  StateId FindState(const StateTuple &tuple) { return FindId(tuple); }

  const StateTuple &Tuple(StateId s) const { return FindEntry(s); }
};

// An implementation using a vector for the tuple to state mapping. It is
// passed a fingerprint functor that should fingerprint tuples uniquely to an
// integer that can used as a vector index. Normally, VectorStateTable
// constructs the fingerprint functor. Alternately, the user can pass this
// objert, in which case the table takes ownership.
template <class T, class FP>
class VectorStateTable : public VectorBiTable<typename T::StateId, T, FP> {
 public:
  using StateTuple = T;
  using StateId = typename StateTuple::StateId;

  using VectorBiTable<StateId, StateTuple, FP>::FindId;
  using VectorBiTable<StateId, StateTuple, FP>::FindEntry;
  using VectorBiTable<StateId, StateTuple, FP>::Size;
  using VectorBiTable<StateId, StateTuple, FP>::Fingerprint;

  explicit VectorStateTable(FP *fingerprint = nullptr, size_t table_size = 0)
      : VectorBiTable<StateId, StateTuple, FP>(fingerprint, table_size) {}

  StateId FindState(const StateTuple &tuple) { return FindId(tuple); }

  const StateTuple &Tuple(StateId s) const { return FindEntry(s); }
};

// An implementation using a vector and a compact hash table. The selection
// functor returns true for tuples to be hashed in the vector. The fingerprint
// functor should fingerprint tuples uniquely to an integer that can be used as
// a vector index. A hash functor is used when hashing tuples into the compact
// hash table.
template <class T, class Select, class FP, class H>
class VectorHashStateTable
    : public VectorHashBiTable<typename T::StateId, T, Select, FP, H> {
 public:
  using StateTuple = T;
  using StateId = typename StateTuple::StateId;

  using VectorHashBiTable<StateId, StateTuple, Select, FP, H>::FindId;
  using VectorHashBiTable<StateId, StateTuple, Select, FP, H>::FindEntry;
  using VectorHashBiTable<StateId, StateTuple, Select, FP, H>::Size;
  using VectorHashBiTable<StateId, StateTuple, Select, FP, H>::Selector;
  using VectorHashBiTable<StateId, StateTuple, Select, FP, H>::Fingerprint;
  using VectorHashBiTable<StateId, StateTuple, Select, FP, H>::Hash;

  VectorHashStateTable(Select *select, FP *fingerprint, H *hash,
                       size_t vector_size = 0, size_t tuple_size = 0)
      : VectorHashBiTable<StateId, StateTuple, Select, FP, H>(
            select, fingerprint, hash, vector_size, tuple_size) {}

  StateId FindState(const StateTuple &tuple) { return FindId(tuple); }

  const StateTuple &Tuple(StateId s) const { return FindEntry(s); }
};

// An implementation using a hash map to map from tuples to state IDs. This
// version permits erasing of states. The state tuple's default constructor
// must produce a tuple that will never be seen and the table must suppor
// operator==.
template <class T, class H>
class ErasableStateTable : public ErasableBiTable<typename T::StateId, T, H> {
 public:
  using StateTuple = T;
  using StateId = typename StateTuple::StateId;

  using ErasableBiTable<StateId, StateTuple, H>::FindId;
  using ErasableBiTable<StateId, StateTuple, H>::FindEntry;
  using ErasableBiTable<StateId, StateTuple, H>::Size;
  using ErasableBiTable<StateId, StateTuple, H>::Erase;

  ErasableStateTable() : ErasableBiTable<StateId, StateTuple, H>() {}

  StateId FindState(const StateTuple &tuple) { return FindId(tuple); }

  const StateTuple &Tuple(StateId s) const { return FindEntry(s); }
};

// The composition state table has the form:
//
// template <class Arc, class FilterState>
// class ComposeStateTable {
//  public:
//   using StateId = typename Arc::StateId;
//
//   // Required constructors.
//
//   ComposeStateTable(const Fst<Arc> &fst1, const Fst<Arc> &fst2);
//   ComposeStateTable(const ComposeStateTable<Arc, FilterState> &table);
//
//   // Looks up a state ID by tuple, adding it if doesn't exist.
//   StateId FindState(const StateTuple &tuple);
//
//   // Looks up a tuple by state ID.
//   const ComposeStateTuple<StateId> &Tuple(StateId s) const;
//
//   // The number of of stored tuples.
//   StateId Size() const;
//
//   // Return true if error was encountered.
//   bool Error() const;
// };
//
// The following interface is used to represent the composition state.
//
// template <class S, class FS>
// class CompositionStateTuple {
//  public:
//   using StateId = typename StateId;
//   using FS = FilterState;
//
//   // Required constructors.
//   StateTuple();
//   StateTuple(StateId s1, StateId s2, const FilterState &fs);
//
//   StateId StateId1() const;
//   StateId StateId2() const;
//
//   FilterState GetFilterState() const;
//
//   std::pair<StateId, StateId> StatePair() const;
//
//   size_t Hash() const;
//
//   friend bool operator==(const StateTuple& x, const StateTuple &y);
// }
//
template <typename S, typename FS>
class DefaultComposeStateTuple {
 public:
  using StateId = S;
  using FilterState = FS;

  DefaultComposeStateTuple()
      : state_pair_(kNoStateId, kNoStateId), fs_(FilterState::NoState()) {}

  DefaultComposeStateTuple(StateId s1, StateId s2, const FilterState &fs)
      : state_pair_(s1, s2), fs_(fs) {}

  StateId StateId1() const { return state_pair_.first; }

  StateId StateId2() const { return state_pair_.second; }

  FilterState GetFilterState() const { return fs_; }

  const std::pair<StateId, StateId> &StatePair() const { return state_pair_; }

  friend bool operator==(const DefaultComposeStateTuple &x,
                         const DefaultComposeStateTuple &y) {
    return (&x == &y) || (x.state_pair_ == y.state_pair_ && x.fs_ == y.fs_);
  }

  size_t Hash() const {
    return StateId1() + StateId2() * 7853 + GetFilterState().Hash() * 7867;
  }

 private:
  std::pair<StateId, StateId> state_pair_;
  FilterState fs_;  // State of composition filter.
};

// Specialization for TrivialFilterState that does not explicitely store the
// filter state since it is always the unique non-blocking state.
template <typename S>
class DefaultComposeStateTuple<S, TrivialFilterState> {
 public:
  using StateId = S;
  using FilterState = TrivialFilterState;

  DefaultComposeStateTuple()
      : state_pair_(kNoStateId, kNoStateId) {}

  DefaultComposeStateTuple(StateId s1, StateId s2, const FilterState &)
      : state_pair_(s1, s2) {}

  StateId StateId1() const { return state_pair_.first; }

  StateId StateId2() const { return state_pair_.second; }

  FilterState GetFilterState() const { return FilterState(true); }

  const std::pair<StateId, StateId> &StatePair() const { return state_pair_; }

  friend bool operator==(const DefaultComposeStateTuple &x,
                         const DefaultComposeStateTuple &y) {
    return (&x == &y) || (x.state_pair_ == y.state_pair_);
  }

  size_t Hash() const { return StateId1() + StateId2() * 7853; }

 private:
  std::pair<StateId, StateId> state_pair_;
};

// Hashing of composition state tuples.
template <typename T>
class ComposeHash {
 public:
  size_t operator()(const T &t) const { return t.Hash(); }
};

// A HashStateTable over composition tuples.
template <typename Arc, typename FilterState,
          typename StateTuple =
              DefaultComposeStateTuple<typename Arc::StateId, FilterState>,
          typename StateTable =
              CompactHashStateTable<StateTuple, ComposeHash<StateTuple>>>
class GenericComposeStateTable : public StateTable {
 public:
  using StateId = typename Arc::StateId;

  GenericComposeStateTable(const Fst<Arc> &fst1, const Fst<Arc> &fst2) {}

  GenericComposeStateTable(const Fst<Arc> &fst1, const Fst<Arc> &fst2,
                           size_t table_size)
      : StateTable(table_size) {}

  constexpr bool Error() const { return false; }

 private:
  GenericComposeStateTable &operator=(const GenericComposeStateTable &table) =
      delete;
};

//  Fingerprint for general composition tuples.
template <typename StateTuple>
class ComposeFingerprint {
 public:
  using StateId = typename StateTuple::StateId;

  // Required but suboptimal constructor.
  ComposeFingerprint() : mult1_(8192), mult2_(8192) {
    LOG(WARNING) << "TupleFingerprint: # of FST states should be provided.";
  }

  // Constructor is provided the sizes of the input FSTs.
  ComposeFingerprint(StateId nstates1, StateId nstates2)
      : mult1_(nstates1), mult2_(nstates1 * nstates2) {}

  size_t operator()(const StateTuple &tuple) {
    return tuple.StateId1() + tuple.StateId2() * mult1_ +
           tuple.GetFilterState().Hash() * mult2_;
  }

 private:
  const ssize_t mult1_;
  const ssize_t mult2_;
};

// Useful when the first composition state determines the tuple.
template <typename StateTuple>
class ComposeState1Fingerprint {
 public:
  size_t operator()(const StateTuple &tuple) { return tuple.StateId1(); }
};

// Useful when the second composition state determines the tuple.
template <typename StateTuple>
class ComposeState2Fingerprint {
 public:
  size_t operator()(const StateTuple &tuple) { return tuple.StateId2(); }
};

// A VectorStateTable over composition tuples. This can be used when the
// product of number of states in FST1 and FST2 (and the composition filter
// state hash) is manageable. If the FSTs are not expanded FSTs, they will
// first have their states counted.
template <typename Arc, typename StateTuple>
class ProductComposeStateTable
    : public VectorStateTable<StateTuple, ComposeFingerprint<StateTuple>> {
 public:
  using StateId = typename Arc::StateId;
  using StateTable =
      VectorStateTable<StateTuple, ComposeFingerprint<StateTuple>>;

  ProductComposeStateTable(const Fst<Arc> &fst1, const Fst<Arc> &fst2,
                           size_t table_size = 0)
      : StateTable(new ComposeFingerprint<StateTuple>(CountStates(fst1),
                                                      CountStates(fst2)),
                   table_size) {}

  ProductComposeStateTable(
      const ProductComposeStateTable<Arc, StateTuple> &table)
      : StateTable(new ComposeFingerprint<StateTuple>(table.Fingerprint())) {}

  constexpr bool Error() const { return false; }

 private:
  ProductComposeStateTable &operator=(const ProductComposeStateTable &table) =
      delete;
};

// A vector-backed table over composition tuples which can be used when the
// first FST is a string (i.e., satisfies kStringProperties) and the second is
// deterministic and epsilon-free. It should be used with a composition filter
// that creates at most one filter state per tuple under these conditions (e.g.,
// SequenceComposeFilter or MatchComposeFilter).
template <typename Arc, typename StateTuple>
class StringDetComposeStateTable
    : public VectorStateTable<StateTuple,
                              ComposeState1Fingerprint<StateTuple>> {
 public:
  using StateId = typename Arc::StateId;
  using StateTable =
      VectorStateTable<StateTuple, ComposeState1Fingerprint<StateTuple>>;

  StringDetComposeStateTable(const Fst<Arc> &fst1, const Fst<Arc> &fst2)
      : error_(false) {
    static constexpr auto props2 = kIDeterministic | kNoIEpsilons;
    if (fst1.Properties(kString, true) != kString) {
      FSTERROR() << "StringDetComposeStateTable: 1st FST is not a string";
      error_ = true;
    } else if (fst2.Properties(props2, true) != props2) {
      FSTERROR() << "StringDetComposeStateTable: 2nd FST is not deterministic "
                    "and epsilon-free";
      error_ = true;
    }
  }

  StringDetComposeStateTable(
      const StringDetComposeStateTable<Arc, StateTuple> &table)
      : StateTable(table), error_(table.error_) {}

  bool Error() const { return error_; }

 private:
  bool error_;

  StringDetComposeStateTable &operator=(const StringDetComposeStateTable &) =
      delete;
};

// A vector-backed table over composition tuples which can be used when the
// first FST is deterministic and epsilon-free and the second is a string (i.e.,
// satisfies kString). It should be used with a composition filter that creates
// at most one filter state per tuple under these conditions (e.g.,
// SequenceComposeFilter or MatchComposeFilter).
template <typename Arc, typename StateTuple>
class DetStringComposeStateTable
    : public VectorStateTable<StateTuple,
                              ComposeState2Fingerprint<StateTuple>> {
 public:
  using StateId = typename Arc::StateId;
  using StateTable =
      VectorStateTable<StateTuple, ComposeState2Fingerprint<StateTuple>>;

  DetStringComposeStateTable(const Fst<Arc> &fst1, const Fst<Arc> &fst2)
      : error_(false) {
    static constexpr auto props = kODeterministic | kNoOEpsilons;
    if (fst1.Properties(props, true) != props) {
      FSTERROR() << "StringDetComposeStateTable: 1st FST is not "
                 << "input-deterministic and epsilon-free";
      error_ = true;
    } else if (fst2.Properties(kString, true) != kString) {
      FSTERROR() << "DetStringComposeStateTable: 2nd FST is not a string";
      error_ = true;
    }
  }

  DetStringComposeStateTable(
      const DetStringComposeStateTable<Arc, StateTuple> &table)
      : StateTable(table), error_(table.error_) {}

  bool Error() const { return error_; }

 private:
  bool error_;

  DetStringComposeStateTable &operator=(const DetStringComposeStateTable &) =
      delete;
};

// An erasable table over composition tuples. The Erase(StateId) method can be
// called if the user either is sure that composition will never return to that
// tuple or doesn't care that if it does, it is assigned a new state ID.
template <typename Arc, typename StateTuple>
class ErasableComposeStateTable
    : public ErasableStateTable<StateTuple, ComposeHash<StateTuple>> {
 public:
  ErasableComposeStateTable(const Fst<Arc> &fst1, const Fst<Arc> &fst2) {}

  constexpr bool Error() const { return false; }

 private:
  ErasableComposeStateTable &operator=(const ErasableComposeStateTable &table) =
      delete;
};

}  // namespace fst

#endif  // FST_LIB_STATE_TABLE_H_