This file is indexed.

/usr/include/fst/synchronize.h is in libfst-dev 1.6.3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Synchronize an FST with bounded delay.

#ifndef FST_LIB_SYNCHRONIZE_H_
#define FST_LIB_SYNCHRONIZE_H_

#include <algorithm>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

#include <fst/cache.h>
#include <fst/test-properties.h>


namespace fst {

using SynchronizeFstOptions = CacheOptions;

namespace internal {

// Implementation class for SynchronizeFst.
// TODO(kbg,sorenj): Refactor to guarantee thread-safety.

template <class Arc>
class SynchronizeFstImpl : public CacheImpl<Arc> {
 public:
  using Label = typename Arc::Label;
  using StateId = typename Arc::StateId;
  using Weight = typename Arc::Weight;

  using FstImpl<Arc>::SetType;
  using FstImpl<Arc>::SetProperties;
  using FstImpl<Arc>::SetInputSymbols;
  using FstImpl<Arc>::SetOutputSymbols;

  using CacheBaseImpl<CacheState<Arc>>::PushArc;
  using CacheBaseImpl<CacheState<Arc>>::HasArcs;
  using CacheBaseImpl<CacheState<Arc>>::HasFinal;
  using CacheBaseImpl<CacheState<Arc>>::HasStart;
  using CacheBaseImpl<CacheState<Arc>>::SetArcs;
  using CacheBaseImpl<CacheState<Arc>>::SetFinal;
  using CacheBaseImpl<CacheState<Arc>>::SetStart;

  using String = basic_string<Label>;

  struct Element {
    Element() {}

    Element(StateId state_, const String *i, const String *o)
        : state(state_), istring(i), ostring(o) {}

    StateId state;          // Input state ID.
    const String *istring;  // Residual input labels.
    const String *ostring;  // Residual output labels.
    // Residual strings are represented by const pointers to
    // basic_string<Label> and are stored in a hash_set. The pointed
    // memory is owned by the hash_set string_set_.
  };

  SynchronizeFstImpl(const Fst<Arc> &fst, const SynchronizeFstOptions &opts)
      : CacheImpl<Arc>(opts), fst_(fst.Copy()) {
    SetType("synchronize");
    const auto props = fst.Properties(kFstProperties, false);
    SetProperties(SynchronizeProperties(props), kCopyProperties);
    SetInputSymbols(fst.InputSymbols());
    SetOutputSymbols(fst.OutputSymbols());
  }

  SynchronizeFstImpl(const SynchronizeFstImpl &impl)
      : CacheImpl<Arc>(impl), fst_(impl.fst_->Copy(true)) {
    SetType("synchronize");
    SetProperties(impl.Properties(), kCopyProperties);
    SetInputSymbols(impl.InputSymbols());
    SetOutputSymbols(impl.OutputSymbols());
  }

  ~SynchronizeFstImpl() override {
    for (const auto *ptr : string_set_) delete ptr;
  }

  StateId Start() {
    if (!HasStart()) {
      auto start = fst_->Start();
      if (start == kNoStateId) return kNoStateId;
      const auto *empty = FindString(new String());
      start = FindState(Element(fst_->Start(), empty, empty));
      SetStart(start);
    }
    return CacheImpl<Arc>::Start();
  }

  Weight Final(StateId s) {
    if (!HasFinal(s)) {
      const auto &element = elements_[s];
      const auto weight = element.state == kNoStateId
                              ? Weight::One()
                              : fst_->Final(element.state);
      if ((weight != Weight::Zero()) && (element.istring)->empty() &&
          (element.ostring)->empty()) {
        SetFinal(s, weight);
      } else {
        SetFinal(s, Weight::Zero());
      }
    }
    return CacheImpl<Arc>::Final(s);
  }

  size_t NumArcs(StateId s) {
    if (!HasArcs(s)) Expand(s);
    return CacheImpl<Arc>::NumArcs(s);
  }

  size_t NumInputEpsilons(StateId s) {
    if (!HasArcs(s)) Expand(s);
    return CacheImpl<Arc>::NumInputEpsilons(s);
  }

  size_t NumOutputEpsilons(StateId s) {
    if (!HasArcs(s)) Expand(s);
    return CacheImpl<Arc>::NumOutputEpsilons(s);
  }

  uint64 Properties() const override { return Properties(kFstProperties); }

  // Sets error if found, returning other FST impl properties.
  uint64 Properties(uint64 mask) const override {
    if ((mask & kError) && fst_->Properties(kError, false)) {
      SetProperties(kError, kError);
    }
    return FstImpl<Arc>::Properties(mask);
  }

  void InitArcIterator(StateId s, ArcIteratorData<Arc> *data) {
    if (!HasArcs(s)) Expand(s);
    CacheImpl<Arc>::InitArcIterator(s, data);
  }

  // Returns the first character of the string obtained by concatenating the
  // string and the label.
  Label Car(const String *str, Label label = 0) const {
    if (!str->empty()) {
      return (*str)[0];
    } else {
      return label;
    }
  }

  // Computes the residual string obtained by removing the first
  // character in the concatenation of the string and the label.
  const String *Cdr(const String *str, Label label = 0) {
    auto *r = new String();
    for (size_t i = 1; i < str->size(); ++i) r->push_back((*str)[i]);
    if (label && !(str->empty())) r->push_back(label);
    return FindString(r);
  }

  // Computes the concatenation of the string and the label.
  const String *Concat(const String *str, Label label = 0) {
    auto *r = new String();
    for (size_t i = 0; i < str->size(); ++i) r->push_back((*str)[i]);
    if (label) r->push_back(label);
    return FindString(r);
  }

  // Tests if the concatenation of the string and label is empty.
  bool Empty(const String *str, Label label = 0) const {
    if (str->empty()) {
      return label == 0;
    } else {
      return false;
    }
  }

  // Finds the string pointed by s in the hash set. Transfers the pointer
  // ownership to the hash set.
  const String *FindString(const String *str) {
    const auto insert_result = string_set_.insert(str);
    if (!insert_result.second) {
      delete str;
    }
    return *insert_result.first;
  }

  // Finds state corresponding to an element. Creates new state if element
  // is not found.
  StateId FindState(const Element &element) {
    const auto insert_result =
        element_map_.insert(std::make_pair(element, elements_.size()));
    if (insert_result.second) {
      elements_.push_back(element);
    }
    return insert_result.first->second;
  }

  // Computes the outgoing transitions from a state, creating new destination
  // states as needed.
  void Expand(StateId s) {
    const auto element = elements_[s];
    if (element.state != kNoStateId) {
      for (ArcIterator<Fst<Arc>> aiter(*fst_, element.state); !aiter.Done();
           aiter.Next()) {
        const auto &arc = aiter.Value();
        if (!Empty(element.istring, arc.ilabel) &&
            !Empty(element.ostring, arc.olabel)) {
          const auto *istring = Cdr(element.istring, arc.ilabel);
          const auto *ostring = Cdr(element.ostring, arc.olabel);
          PushArc(s, Arc(Car(element.istring, arc.ilabel),
                         Car(element.ostring, arc.olabel), arc.weight,
                         FindState(Element(arc.nextstate, istring, ostring))));
        } else {
          const auto *istring = Concat(element.istring, arc.ilabel);
          const auto *ostring = Concat(element.ostring, arc.olabel);
          PushArc(s, Arc(0, 0, arc.weight,
                         FindState(Element(arc.nextstate, istring, ostring))));
        }
      }
    }
    const auto weight = element.state == kNoStateId
                            ? Weight::One()
                            : fst_->Final(element.state);
    if ((weight != Weight::Zero()) &&
        ((element.istring)->size() + (element.ostring)->size() > 0)) {
      const auto *istring = Cdr(element.istring);
      const auto *ostring = Cdr(element.ostring);
      PushArc(s, Arc(Car(element.istring), Car(element.ostring), weight,
                     FindState(Element(kNoStateId, istring, ostring))));
    }
    SetArcs(s);
  }

 private:
  // Equality function for Elements; assumes strings have been hashed.
  class ElementEqual {
   public:
    bool operator()(const Element &x, const Element &y) const {
      return x.state == y.state && x.istring == y.istring &&
             x.ostring == y.ostring;
    }
  };

  // Hash function for Elements to FST states.
  class ElementKey {
   public:
    size_t operator()(const Element &x) const {
      size_t key = x.state;
      key = (key << 1) ^ (x.istring)->size();
      for (size_t i = 0; i < (x.istring)->size(); ++i) {
        key = (key << 1) ^ (*x.istring)[i];
      }
      key = (key << 1) ^ (x.ostring)->size();
      for (size_t i = 0; i < (x.ostring)->size(); ++i) {
        key = (key << 1) ^ (*x.ostring)[i];
      }
      return key;
    }
  };

  // Equality function for strings.
  class StringEqual {
   public:
    bool operator()(const String *const &x, const String *const &y) const {
      if (x->size() != y->size()) return false;
      for (size_t i = 0; i < x->size(); ++i) {
        if ((*x)[i] != (*y)[i]) return false;
      }
      return true;
    }
  };

  // Hash function for set of strings
  class StringKey {
   public:
    size_t operator()(const String *const &x) const {
      size_t key = x->size();
      for (size_t i = 0; i < x->size(); ++i) key = (key << 1) ^ (*x)[i];
      return key;
    }
  };

  using ElementMap =
      std::unordered_map<Element, StateId, ElementKey, ElementEqual>;
  using StringSet = std::unordered_set<const String *, StringKey, StringEqual>;

  std::unique_ptr<const Fst<Arc>> fst_;
  std::vector<Element> elements_;  // Maps FST state to Elements.
  ElementMap element_map_;         // Maps Elements to FST state.
  StringSet string_set_;
};

}  // namespace internal

// Synchronizes a transducer. This version is a delayed FST. The result is an
// equivalent FST that has the property that during the traversal of a path,
// the delay is either zero or strictly increasing, where the delay is the
// difference between the number of non-epsilon output labels and input labels
// along the path.
//
// For the algorithm to terminate, the input transducer must have bounded
// delay, i.e., the delay of every cycle must be zero.
//
// Complexity:
//
// - A has bounded delay: exponential.
// - A does not have bounded delay: does not terminate.
//
// For more information, see:
//
// Mohri, M. 2003. Edit-distance of weighted automata: General definitions and
// algorithms. International Journal of Computer Science 14(6): 957-982.
//
// This class attaches interface to implementation and handles reference
// counting, delegating most methods to ImplToFst.
template <class A>
class SynchronizeFst : public ImplToFst<internal::SynchronizeFstImpl<A>> {
 public:
  using Arc = A;
  using StateId = typename Arc::StateId;
  using Weight = typename Arc::Weight;

  using Store = DefaultCacheStore<Arc>;
  using State = typename Store::State;
  using Impl = internal::SynchronizeFstImpl<A>;

  friend class ArcIterator<SynchronizeFst<A>>;
  friend class StateIterator<SynchronizeFst<A>>;

  explicit SynchronizeFst(
      const Fst<A> &fst,
      const SynchronizeFstOptions &opts = SynchronizeFstOptions())
      : ImplToFst<Impl>(std::make_shared<Impl>(fst, opts)) {}

  // See Fst<>::Copy() for doc.
  SynchronizeFst(const SynchronizeFst<Arc> &fst, bool safe = false)
      : ImplToFst<Impl>(fst, safe) {}

  // Gets a copy of this SynchronizeFst. See Fst<>::Copy() for further doc.
  SynchronizeFst<Arc> *Copy(bool safe = false) const override {
    return new SynchronizeFst<Arc>(*this, safe);
  }

  inline void InitStateIterator(StateIteratorData<Arc> *data) const override;

  void InitArcIterator(StateId s, ArcIteratorData<Arc> *data) const override {
    GetMutableImpl()->InitArcIterator(s, data);
  }

 private:
  using ImplToFst<Impl>::GetImpl;
  using ImplToFst<Impl>::GetMutableImpl;

  SynchronizeFst &operator=(const SynchronizeFst &) = delete;
};

// Specialization for SynchronizeFst.
template <class Arc>
class StateIterator<SynchronizeFst<Arc>>
    : public CacheStateIterator<SynchronizeFst<Arc>> {
 public:
  explicit StateIterator(const SynchronizeFst<Arc> &fst)
      : CacheStateIterator<SynchronizeFst<Arc>>(fst, fst.GetMutableImpl()) {}
};

// Specialization for SynchronizeFst.
template <class Arc>
class ArcIterator<SynchronizeFst<Arc>>
    : public CacheArcIterator<SynchronizeFst<Arc>> {
 public:
  using StateId = typename Arc::StateId;

  ArcIterator(const SynchronizeFst<Arc> &fst, StateId s)
      : CacheArcIterator<SynchronizeFst<Arc>>(fst.GetMutableImpl(), s) {
    if (!fst.GetImpl()->HasArcs(s)) fst.GetMutableImpl()->Expand(s);
  }
};

template <class Arc>
inline void SynchronizeFst<Arc>::InitStateIterator(
    StateIteratorData<Arc> *data) const {
  data->base = new StateIterator<SynchronizeFst<Arc>>(*this);
}

// Synchronizes a transducer. This version writes the synchronized result to a
// MutableFst. The result will be an equivalent FST that has the property that
// during the traversal of a path, the delay is either zero or strictly
// increasing, where the delay is the difference between the number of
// non-epsilon output labels and input labels along the path.
//
// For the algorithm to terminate, the input transducer must have bounded
// delay, i.e., the delay of every cycle must be zero.
//
// Complexity:
//
// - A has bounded delay: exponential.
// - A does not have bounded delay: does not terminate.
//
// For more information, see:
//
// Mohri, M. 2003. Edit-distance of weighted automata: General definitions and
// algorithms. International Journal of Computer Science 14(6): 957-982.
template <class Arc>
void Synchronize(const Fst<Arc> &ifst, MutableFst<Arc> *ofst) {
  // Caches only the last state for fastest copy.
  const SynchronizeFstOptions opts(FLAGS_fst_default_cache_gc, 0);
  *ofst = SynchronizeFst<Arc>(ifst, opts);
}

}  // namespace fst

#endif  // FST_LIB_SYNCHRONIZE_H_