This file is indexed.

/usr/lib/gcc/x86_64-linux-gnu/5/include/cilk/reducer_list.h is in libgcc-5-dev 5.5.0-12ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
/*  reducer_list.h                  -*- C++ -*-
 *
 *  @copyright
 *  Copyright (C) 2009-2013, Intel Corporation
 *  All rights reserved.
 *  
 *  @copyright
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *  
 *    * Redistributions of source code must retain the above copyright
 *      notice, this list of conditions and the following disclaimer.
 *    * Redistributions in binary form must reproduce the above copyright
 *      notice, this list of conditions and the following disclaimer in
 *      the documentation and/or other materials provided with the
 *      distribution.
 *    * Neither the name of Intel Corporation nor the names of its
 *      contributors may be used to endorse or promote products derived
 *      from this software without specific prior written permission.
 *  
 *  @copyright
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *  HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 *  AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
 *  WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 */

/** @file reducer_list.h
 *
 *  @brief Defines classes for doing parallel list creation by appending or
 *  prepending.
 *
 *  @ingroup ReducersList
 *
 *  @see ReducersList
 */

#ifndef REDUCER_LIST_H_INCLUDED
#define REDUCER_LIST_H_INCLUDED

#include <cilk/reducer.h>
#include <list>

/** @defgroup ReducersList List Reducers
 *
 *  List append and prepend reducers allow the creation of a standard list by
 *  concatenating a set of lists or values in parallel.
 *
 *  @ingroup Reducers
 *
 *  You should be familiar with @ref pagereducers "Cilk reducers", described in
 *  file `reducers.md`, and particularly with @ref reducers_using, before trying
 *  to use the information in this file.
 *
 *  @section redlist_usage Usage Example
 *
 *      // Create a list containing the labels of the nodes of a tree in
 *      // “inorder” (left subtree, root, right subtree).
 *
 *      struct Tree { Tree* left; Tree* right; string label; ... };
 *
 *      list<string> x;
 *      cilk::reducer< cilk::op_list_append<string> > xr(cilk::move_in(x));
 *      collect_labels(tree, xr);
 *      xr.move_out(x);
 *      
 *      void collect_labels(Tree* node, 
 *                          cilk::reducer< cilk::op_list_append<string> >& xr)
 *      {
 *          if (node) {
 *              cilk_spawn collect_labels(node->left, xr);
 *              xr->push_back(node->label);
 *              collect_labels(node->right, xr);
 *              cilk_sync;
 *          }
 *      }
 *
 *  @section redlist_monoid The Monoid
 *
 *  @subsection redlist_monoid_values Value Set
 *
 *  The value set of a list reducer is the set of values of the class 
 *  `std::list<Type, Allocator>`, which we refer to as “the reducer’s list 
 *  type”.
 *
 *  @subsection redlist_monoid_operator Operator
 *
 *  The operator of a list append reducer is defined as
 *
 *      x CAT y == (every element of x, followed by every element of y)
 *
 *  The operator of a list prepend reducer is defined as
 *
 *      x RCAT y == (every element of y, followed by every element of x)
 *
 *  @subsection redlist_monoid_identity Identity
 *
 *  The identity value of a list reducer is the empty list, which is the value 
 *  of the expression `std::list<Type, Allocator>([allocator])`.
 *
 *  @section redlist_operations Operations
 *
 *  In the operation descriptions below, the type name `List` refers to the 
 *  reducer’s string type, `std::list<Type, Allocator>`.
 *
 *  @subsection redlist_constructors Constructors
 *
 *  Any argument list which is valid for a `std::list` constructor is valid for 
 *  a list reducer constructor. The usual move-in constructor is also provided:
 *
 *      reducer(move_in(List& variable))
 *
 *  A list reducer with no constructor arguments, or with only an allocator 
 *  argument, will initially contain the identity value, an empty list. 
 *
 *  @subsection redlist_get_set Set and Get
 *
 *      r.set_value(const List& value)
 *      const List& = r.get_value() const
 *      r.move_in(List& variable)
 *      r.move_out(List& variable)
 *
 *  @subsection redlist_view_ops View Operations
 *
 *  The view of a list append reducer provides the following member functions:
 *
 *      void push_back(const Type& element) 
 *      void insert_back(List::size_type n, const Type& element) 
 *      template <typename Iter> void insert_back(Iter first, Iter last)
 *      void splice_back(List& x)
 *      void splice_back(List& x, List::iterator i)
 *      void splice_back(List& x, List::iterator first, List::iterator last)
 *  
 *  The view of a list prepend reducer provides the following member functions:
 *
 *      void push_front(const Type& element) 
 *      void insert_front(List::size_type n, const Type& element) 
 *      template <typename Iter> void insert_front(Iter first, Iter last)
 *      void splice_front(List& x)
 *      void splice_front(List& x, List::iterator i)
 *      void splice_front(List& x, List::iterator first, List::iterator last)
 *
 *  The `push_back` and `push_front` functions are the same as the
 *  corresponding `std::list` functions. The `insert_back`, `splice_back`,
 *  `insert_front`, and `splice_front` functions are the same as the 
 *  `std::list` `insert` and `splice` functions, with the first parameter
 *  fixed to the end or beginning of the list, respectively.
 *
 *  @section redlist_performance Performance Considerations
 *
 *  An efficient reducer requires that combining the values of two views (using 
 *  the view `reduce()` function) be a constant-time operations. Two lists can
 *  be merged in constant time using the `splice()` function if they have the
 *  same allocator. Therefore, the lists for new views are created (by the view
 *  identity constructor) using the same allocator as the list that was created
 *  when the reducer was constructed.
 *
 *  The performance of adding elements to a list reducer depends on the view 
 *  operations that are used:
 *
 *  *   The `push` functions add a single element to the list, and therefore
 *      take constant time.
 *  *   An `insert` function that inserts _N_ elements adds each of them
 *      individually, and therefore takes _O(N)_ time. 
 *  *   A `splice` function that inserts _N_ elements just adjusts a couple of
 *      pointers, and therefore takes constant time, _if the splice is from a
 *      list with the same allocator as the reducer_. Otherwise, it is
 *      equivalent to an `insert`, and takes _O(N)_ time.
 *
 *  This means that for best performance, if you will be adding elements to a
 *  list reducer in batches, you should `splice` them from a list having the
 *  same allocator as the reducer.
 *
 *  The reducer `move_in` and `move_out` functions do a constant-time `swap` if
 *  the variable has the same allocator as the reducer, and a linear-time copy
 *  otherwise.
 *  
 *  Note that the allocator of a list reducer is determined when the reducer is
 *  constructed. The following two examples may have very different behavior:
 *
 *      list<Element, Allocator> a_list;
 *
 *      reducer< list_append<Element, Allocator> reducer1(move_in(a_list));
 *      ... parallel computation ...
 *      reducer1.move_out(a_list);
 *
 *      reducer< list_append<Element, Allocator> reducer2;
 *      reducer2.move_in(a_list);
 *      ... parallel computation ...
 *      reducer2.move_out(a_list);
 *
 *  *   `reducer1` will be constructed with the same allocator as `a_list`,
 *      because the list was was specified in the constructor. The `move_in`
 *      and`move_out` can therefore be done with a `swap` in constant time.
 *  *   `reducer2` will be constructed with a _default_ allocator,
 *      “`Allocator()`”, which may or may not be the same as the allocator of
 *      `a_list`. Therefore, the `move_in` and `move_out` may have to be done
 *      with a copy in _O(N)_ time.
 *  
 *  (All instances of an allocator type with no internal state (like
 *  `std::allocator`) are “the same”. You only need to worry about the “same
 *  allocator” issue when you create list reducers with custom allocator types.)
 *
 *  @section redlist_types Type and Operator Requirements
 *
 *  `std::list<Type, Allocator>` must be a valid type.
 */


namespace cilk {

namespace internal {

/** @ingroup ReducersList */
//@{

/** Base class for list append and prepend view classes.
 *
 *  @note   This class provides the definitions that are required for a class
 *          that will be used as the parameter of a @ref list_monoid_base
 *          specialization. 
 *
 *  @tparam Type        The list element type (not the list type).
 *  @tparam Allocator   The list's allocator class.
 *
 *  @see ReducersList
 *  @see list_monoid_base
 */
template <typename Type, typename Allocator>
class list_view_base
{
protected:
    /// The type of the contained list.
    typedef std::list<Type, Allocator>  list_type;

    /// The list accumulator variable.
    list_type m_value;

public:

    /** @name Monoid support.
     */
    //@{
    
    /// Required by @ref monoid_with_view
    typedef list_type   value_type;

    /// Required by @ref list_monoid_base
    Allocator get_allocator() const
    { 
        return m_value.get_allocator(); 
    }
    
    //@}
    
    
    /** @name Constructors.
     */
    //@{
    
    /// Standard list constructor.
    explicit list_view_base(const Allocator& a = Allocator()) : m_value(a) {}
    explicit list_view_base(
        typename list_type::size_type n, 
        const Type& value = Type(), 
        const Allocator& a = Allocator() ) : m_value(n, value, a) {}
    template <typename Iter> 
    list_view_base(Iter first, Iter last, const Allocator& a = Allocator()) : 
        m_value(first, last, a) {}
    list_view_base(const list_type& list) : m_value(list) {}

    /// Move-in constructor.
    explicit list_view_base(move_in_wrapper<value_type> w)
        : m_value(w.value().get_allocator())
    {
        m_value.swap(w.value());
    }
    
    //@}
    
    /** @name Reducer support.
     */
    //@{
    
    /// Required by reducer::move_in()
    void view_move_in(value_type& v)
    {
        if (m_value.get_allocator() == v.get_allocator())
            // Equal allocators. Do a (fast) swap.
            m_value.swap(v);
        else
            // Unequal allocators. Do a (slow) copy.
            m_value = v;
        v.clear();
    }
    
    /// Required by reducer::move_out()
    void view_move_out(value_type& v)
    {
        if (m_value.get_allocator() == v.get_allocator())
            // Equal allocators.  Do a (fast) swap.
            m_value.swap(v);
        else
            // Unequal allocators.  Do a (slow) copy.
            v = m_value;
        m_value.clear();
    }
    
    /// Required by reducer::set_value()
    void view_set_value(const value_type& v) { m_value = v; }

    /// Required by reducer::get_value()
    value_type const& view_get_value()     const { return m_value; }
    
    // Required by legacy wrapper get_reference()
    value_type      & view_get_reference()       { return m_value; }
    value_type const& view_get_reference() const { return m_value; }
    
    //@}
};


/** Base class for list append and prepend monoid classes.
 *
 *  The key to efficient reducers is that the `identity` operation, which
 * creates a new per-strand view, and the `reduce` operation, which combines
 *  two per-strand views, must be constant-time operations. Two lists can be
 *  concatenated in constant time only if they have the same allocator.
 *  Therefore, all the per-strand list accumulator variables must be created
 *   with the same allocator as the leftmost view list. 
 *
 *  This means that a list reduction monoid must have a copy of the allocator
 *  of the leftmost view’s list, so that it can use it in the `identity`
 *  operation. This, in turn, requires that list reduction monoids have a
 *  specialized `construct()` function, which constructs the leftmost view
 *  before the monoid, and then passes the leftmost view’s allocator to the
 *  monoid constructor.
 *
 *  @tparam View    The list append or prepend view class.
 *  @tparam Align   If `false` (the default), reducers instantiated on this
 *                  monoid will be naturally aligned (the Cilk library 1.0
 *                  behavior). If `true`, reducers instantiated on this monoid
 *                  will be cache-aligned for binary compatibility with 
 *                  reducers in Cilk library version 0.9.
 *
 *  @see ReducersList
 *  @see list_view_base
 */
template <typename View, bool Align>
class list_monoid_base : public monoid_with_view<View, Align>
{
    typedef typename View::value_type           list_type;
    typedef typename list_type::allocator_type  allocator_type;
    allocator_type                              m_allocator;
    
    using monoid_base<list_type, View>::provisional;
    
public:

    /** Constructor.
     *
     *  There is no default constructor for list monoids, because the allocator 
     *  must always be specified.
     *
     *  @param  allocator   The list allocator to be used when
     *                      identity-constructing new views.
     */
    list_monoid_base(const allocator_type& allocator = allocator_type()) :
        m_allocator(allocator) {}

    /** Create an identity view.
     *
     *  List view identity constructors take the list allocator as an argument.
     *
     *  @param v    The address of the uninitialized memory in which the view
     *              will be constructed.
     */
    void identity(View *v) const { ::new((void*) v) View(m_allocator); }
    
    /** @name construct functions
     *
     *  All `construct()` functions first construct the leftmost view, using 
     *  the optional @a x1, @a x2, and @a x3 arguments that were passed in from
     *  the reducer constructor. They then call the view’s `get_allocator()`
     *  function to get the list allocator from its contained list, and pass it
     *  to the monoid constructor.
     */
    //@{

    template <typename Monoid>
    static void construct(Monoid* monoid, View* view)
        { provisional( new ((void*)view) View() ).confirm_if( 
            new ((void*)monoid) Monoid(view->get_allocator()) ); }

    template <typename Monoid, typename T1>
    static void construct(Monoid* monoid, View* view, const T1& x1)
        { provisional( new ((void*)view) View(x1) ).confirm_if( 
            new ((void*)monoid) Monoid(view->get_allocator()) ); }

    template <typename Monoid, typename T1, typename T2>
    static void construct(Monoid* monoid, View* view, const T1& x1, const T2& x2)
        { provisional( new ((void*)view) View(x1, x2) ).confirm_if( 
            new ((void*)monoid) Monoid(view->get_allocator()) ); }

    template <typename Monoid, typename T1, typename T2, typename T3>
    static void construct(Monoid* monoid, View* view, const T1& x1, const T2& x2, 
                            const T3& x3)
        { provisional( new ((void*)view) View(x1, x2, x3) ).confirm_if( 
            new ((void*)monoid) Monoid(view->get_allocator()) ); }

    //@}
};

//@}

} // namespace internal


/** @ingroup ReducersList */
//@{

/** The list append reducer view class.
 *
 *  This is the view class for reducers created with 
 *  `cilk::reducer< cilk::op_list_append<Type, Allocator> >`. It holds the
 *  accumulator variable for the reduction, and allows only append operations
 *  to be performed on it.
 *
 *  @note   The reducer “dereference” operation (`reducer::operator *()`) 
 *          yields a reference to the view. Thus, for example, the view class’s
 *          `push_back` operation would be used in an expression like
 *          `r->push_back(a)`, where `r` is a list append reducer variable.
 *
 *  @tparam Type        The list element type (not the list type).
 *  @tparam Allocator   The list allocator type.
 *
 *  @see ReducersList
 *  @see op_list_append
 */
template <class Type, 
          class Allocator = typename std::list<Type>::allocator_type>
class op_list_append_view : public internal::list_view_base<Type, Allocator>
{
    typedef internal::list_view_base<Type, Allocator>   base;
    typedef std::list<Type, Allocator>                  list_type;
    typedef typename list_type::iterator                iterator;
    
    iterator end() { return this->m_value.end(); }

public:

    /** @name Constructors.
     *
     *  All op_list_append_view constructors simply pass their arguments on to
     *  the @ref internal::list_view_base base class constructor.
     *
     *  @ref internal::list_view_base supports all the std::list constructor
     *  forms, as well as the reducer move_in constructor form.
     */
    //@{
    
    op_list_append_view() : base() {}
    
    template <typename T1>
    op_list_append_view(const T1& x1) : base(x1) {}
    
    template <typename T1, typename T2>
    op_list_append_view(const T1& x1, const T2& x2) : base(x1, x2) {}
    
    template <typename T1, typename T2, typename T3>
    op_list_append_view(const T1& x1, const T2& x2, const T3& x3) : 
        base(x1, x2, x3) {}

    //@}    

    /** @name View modifier operations.
     */
    //@{
    
    /** Add an element at the end of the list.
     *
     *  This is equivalent to `list.push_back(element)`
     */
    void push_back(const Type& element) 
        { this->m_value.push_back(element); }

    /** Insert elements at the end of the list.
     *
     *  This is equivalent to `list.insert(list.end(), n, element)`
     */
    void insert_back(typename list_type::size_type n, const Type& element) 
        { this->m_value.insert(end(), n, element); }

    /** Insert elements at the end of the list.
     *
     *  This is equivalent to `list.insert(list.end(), first, last)`
     */
    template <typename Iter>
    void insert_back(Iter first, Iter last)
        { this->m_value.insert(end(), first, last); }

    /** Splice elements at the end of the list.
     *
     *  This is equivalent to `list.splice(list.end(), x)`
     */
    void splice_back(list_type& x) {
        if (x.get_allocator() == this->m_value.get_allocator())
            this->m_value.splice(end(), x);
        else {
            insert_back(x.begin(), x.end());
            x.clear();
        }
    }

    /** Splice elements at the end of the list.
     *
     *  This is equivalent to `list.splice(list.end(), x, i)`
     */
    void splice_back(list_type& x, iterator i) {
        if (x.get_allocator() == this->m_value.get_allocator())
            this->m_value.splice(end(), x, i);
        else {
            push_back(*i);
            x.erase(i);
        }
    }

    /** Splice elements at the end of the list.
     *
     *  This is equivalent to `list.splice(list.end(), x, first, last)`
     */
    void splice_back(list_type& x, iterator first, iterator last) {
        if (x.get_allocator() == this->m_value.get_allocator())
            this->m_value.splice(end(), x, first, last);
        else {
            insert_back(first, last);
            x.erase(first, last);
        }
    }
    
    //@}

    /** Reduction operation.
     *
     *  This function is invoked by the @ref op_list_append monoid to combine
     *  the views of two strands when the right strand merges with the left 
     *  one. It appends the value contained in the right-strand view to the 
     *  value contained in the left-strand view, and leaves the value in the
     *  right-strand view undefined.
     *
     *  @param  right   A pointer to the right-strand view. (`this` points to
     *                  the left-strand view.)
     *
     *  @note   Used only by the @ref op_list_append monoid to implement the
     *          monoid reduce operation.
     */
    void reduce(op_list_append_view* right)
    {
        __CILKRTS_ASSERT(
            this->m_value.get_allocator() == right->m_value.get_allocator());
        this->m_value.splice(end(), right->m_value);
    }
};


/** The list prepend reducer view class.
 *
 *  This is the view class for reducers created with 
 *  `cilk::reducer< cilk::op_list_prepend<Type, Allocator> >`. It holds the
 *  accumulator variable for the reduction, and allows only prepend operations
 *  to be performed on it.
 *
 *  @note   The reducer “dereference” operation (`reducer::operator *()`) 
 *          yields a reference to the view. Thus, for example, the view class’s
 *          `push_front` operation would be used in an expression like
 *          `r->push_front(a)`, where `r` is a list prepend reducer variable.
 *
 *  @tparam Type        The list element type (not the list type).
 *  @tparam Allocator   The list allocator type.
 *
 *  @see ReducersList
 *  @see op_list_prepend
 */
template <class Type, 
          class Allocator = typename std::list<Type>::allocator_type>
class op_list_prepend_view : public internal::list_view_base<Type, Allocator>
{
    typedef internal::list_view_base<Type, Allocator>   base;
    typedef std::list<Type, Allocator>                  list_type;
    typedef typename list_type::iterator                iterator;
    
    iterator begin() { return this->m_value.begin(); }

public:

    /** @name Constructors.
     *
     *  All op_list_prepend_view constructors simply pass their arguments on to
     *  the @ref internal::list_view_base base class constructor.
     *
     *  @ref internal::list_view_base supports all the std::list constructor
     *  forms, as well as the reducer move_in constructor form.
     *
     */
    //@{
    
    op_list_prepend_view() : base() {}
    
    template <typename T1>
    op_list_prepend_view(const T1& x1) : base(x1) {}
    
    template <typename T1, typename T2>
    op_list_prepend_view(const T1& x1, const T2& x2) : base(x1, x2) {}
    
    template <typename T1, typename T2, typename T3>
    op_list_prepend_view(const T1& x1, const T2& x2, const T3& x3) : 
        base(x1, x2, x3) {}

    //@}    

    /** @name View modifier operations.
     */
    //@{
    
    /** Add an element at the beginning of the list.
     *
     *  This is equivalent to `list.push_front(element)`
     */
    void push_front(const Type& element) 
        { this->m_value.push_front(element); }

    /** Insert elements at the beginning of the list.
     *
     *  This is equivalent to `list.insert(list.begin(), n, element)`
     */
    void insert_front(typename list_type::size_type n, const Type& element) 
        { this->m_value.insert(begin(), n, element); }

    /** Insert elements at the beginning of the list.
     *
     *  This is equivalent to `list.insert(list.begin(), first, last)`
     */
    template <typename Iter>
    void insert_front(Iter first, Iter last)
        { this->m_value.insert(begin(), first, last); }

    /** Splice elements at the beginning of the list.
     *
     *  This is equivalent to `list.splice(list.begin(), x)`
     */
    void splice_front(list_type& x) {
        if (x.get_allocator() == this->m_value.get_allocator())
            this->m_value.splice(begin(), x);
        else {
            insert_front(x.begin(), x.begin());
            x.clear();
        }
    }

    /** Splice elements at the beginning of the list.
     *
     *  This is equivalent to `list.splice(list.begin(), x, i)`
     */
    void splice_front(list_type& x, iterator i) {
        if (x.get_allocator() == this->m_value.get_allocator())
            this->m_value.splice(begin(), x, i);
        else {
            push_front(*i);
            x.erase(i);
        }
    }

    /** Splice elements at the beginning of the list.
     *
     *  This is equivalent to `list.splice(list.begin(), x, first, last)`
     */
    void splice_front(list_type& x, iterator first, iterator last) {
        if (x.get_allocator() == this->m_value.get_allocator())
            this->m_value.splice(begin(), x, first, last);
        else {
            insert_front(first, last);
            x.erase(first, last);
        }
    }
    
    //@}

    /** Reduction operation.
     *
     *  This function is invoked by the @ref op_list_prepend monoid to combine
     *  the views of two strands when the right strand merges with the left 
     *  one. It prepends the value contained in the right-strand view to the 
     *  value contained in the left-strand view, and leaves the value in the
     *  right-strand view undefined.
     *
     *  @param  right   A pointer to the right-strand view. (`this` points to
     *                  the left-strand view.)
     *
     *  @note   Used only by the @ref op_list_prepend monoid to implement the
     *          monoid reduce operation.
     */
    /** Reduce operation.
     *
     *  Required by @ref monoid_base.
     */
    void reduce(op_list_prepend_view* right)
    {
        __CILKRTS_ASSERT(
            this->m_value.get_allocator() == right->m_value.get_allocator());
        this->m_value.splice(begin(), right->m_value);
    }
};



/** Monoid class for list append reductions. Instantiate the cilk::reducer
 *  template class with a op_list_append monoid to create a list append reducer
 *  class. For example, to create a list of strings:
 *
 *      cilk::reducer< cilk::op_list_append<std::string> > r;
 *
 *  @tparam Type    The list element type (not the list type).
 *  @tparam Alloc   The list allocator type.
 *  @tparam Align   If `false` (the default), reducers instantiated on this
 *                  monoid will be naturally aligned (the Cilk library 1.0
 *                  behavior). If `true`, reducers instantiated on this monoid
 *                  will be cache-aligned for binary compatibility with 
 *                  reducers in Cilk library version 0.9.
 *
 *  @see ReducersList
 *  @see op_list_append_view
 */
template <typename Type, 
          typename Allocator = typename std::list<Type>::allocator_type,
          bool Align = false>
struct op_list_append : 
    public internal::list_monoid_base<op_list_append_view<Type, Allocator>, Align> 
{
    /// Construct with default allocator.
    op_list_append() {}
    /// Construct with specified allocator.
    op_list_append(const Allocator& alloc) : 
        internal::list_monoid_base<op_list_append_view<Type, Allocator>, Align>(alloc) {}
};

/** Monoid class for list prepend reductions. Instantiate the cilk::reducer
 *  template class with a op_list_prepend monoid to create a list prepend
 *  reducer class. For example, to create a list of strings:
 *
 *      cilk::reducer< cilk::op_list_prepend<std::string> > r;
 *
 *  @tparam Type    The list element type (not the list type).
 *  @tparam Alloc   The list allocator type.
 *  @tparam Align   If `false` (the default), reducers instantiated on this
 *                  monoid will be naturally aligned (the Cilk library 1.0
 *                  behavior). If `true`, reducers instantiated on this monoid
 *                  will be cache-aligned for binary compatibility with 
 *                  reducers in Cilk library version 0.9.
 *
 *  @see ReducersList
 *  @see op_list_prepend_view
 */
template <typename Type, 
          typename Allocator = typename std::list<Type>::allocator_type,
          bool Align = false>
struct op_list_prepend : 
    public internal::list_monoid_base<op_list_prepend_view<Type, Allocator>, Align> 
{
    /// Construct with default allocator.
    op_list_prepend() {}
    /// Construct with specified allocator.
    op_list_prepend(const Allocator& alloc) : 
        internal::list_monoid_base<op_list_prepend_view<Type, Allocator>, Align>(alloc) {}
};


/** Deprecated list append reducer wrapper class.
 *
 *  reducer_list_append is the same as 
 *  @ref reducer<@ref op_list_append>, except that reducer_list_append is a
 *  proxy for the contained view, so that accumulator variable update 
 *  operations can be applied directly to the reducer. For example, an element
 *  is appended to a `reducer<%op_list_append>` with `r->push_back(a)`, but an
 *  element can be appended to a `%reducer_list_append` with `r.push_back(a)`.
 *
 *  @deprecated Users are strongly encouraged to use `reducer<monoid>`
 *              reducers rather than the old wrappers like reducer_list_append. 
 *              The `reducer<monoid>` reducers show the reducer/monoid/view
 *              architecture more clearly, are more consistent in their
 *              implementation, and present a simpler model for new
 *              user-implemented reducers.
 *
 *  @note   Implicit conversions are provided between `%reducer_list_append` 
 *          and `reducer<%op_list_append>`. This allows incremental code
 *          conversion: old code that used `%reducer_list_append` can pass a
 *          `%reducer_list_append` to a converted function that now expects a
 *          pointer or reference to a `reducer<%op_list_append>`, and vice
 *          versa.
 *
 *  @tparam Type        The value type of the list.
 *  @tparam Allocator   The allocator type of the list.
 *
 *  @see op_list_append
 *  @see reducer
 *  @see ReducersList
 */
template <class Type, class Allocator = std::allocator<Type> >
class reducer_list_append : 
    public reducer<op_list_append<Type, Allocator, true> >
{
    typedef reducer<op_list_append<Type, Allocator, true> > base;
    using base::view;
public:

    /// The reducer’s list type.
    typedef typename base::value_type list_type;

    /// The list’s element type.
    typedef Type list_value_type;

    /// The reducer’s primitive component type.
    typedef Type basic_value_type;

    /// The monoid type.
    typedef typename base::monoid_type Monoid;

    /** @name Constructors
     */
    //@{
    
    /** Construct a reducer with an empty list.
     */
    reducer_list_append() {}

    /** Construct a reducer with a specified initial list value.
     */
    reducer_list_append(const std::list<Type, Allocator> &initial_value) : 
        base(initial_value) {}
        
    //@}
        

    /** @name Forwarded functions
     *  @details Functions that update the contained accumulator variable are
     *  simply forwarded to the contained @ref op_and_view. */
    //@{

    /// @copydoc op_list_append_view::push_back(const Type&)
    void push_back(const Type& element) { view().push_back(element); }
    
    //@}

    /** Allow mutable access to the list within the current view.
     * 
     *  @warning    If this method is called before the parallel calculation is
     *              complete, the list returned by this method will be a partial
     *              result.
     * 
     *  @returns    A mutable reference to the list within the current view.
     */
    list_type &get_reference() { return view().view_get_reference(); }

    /** Allow read-only access to the list within the current view.
     * 
     *  @warning    If this method is called before the parallel calculation is
     *              complete, the list returned by this method will be a partial
     *              result.
     * 
     *  @returns    A const reference to the list within the current view.
     */
    list_type const &get_reference() const { return view().view_get_reference(); }

    /// @name Dereference
    //@{
    /** Dereferencing a wrapper is a no-op. It simply returns the wrapper.
     *  Combined with the rule that a wrapper forwards view operations to the
     *  view, this means that view operations can be written the same way on
     *  reducers and wrappers, which is convenient for incrementally
     *  converting code using wrappers to code using reducers. That is:
     *
     *      reducer< op_list_append<int> > r;
     *      r->push_back(a);    // *r returns the view
     *                          // push_back is a view member function
     *
     *      reducer_list_append<int> w;
     *      w->push_back(a);    // *w returns the wrapper
     *                          // push_back is a wrapper member function that
     *                          // calls the corresponding view function
     */
    //@{
    reducer_list_append&       operator*()       { return *this; }
    reducer_list_append const& operator*() const { return *this; }

    reducer_list_append*       operator->()       { return this; }
    reducer_list_append const* operator->() const { return this; }
    //@}
    
    /** @name Upcast
     *  @details In Cilk library 0.9, reducers were always cache-aligned. In
     *  library  1.0, reducer cache alignment is optional. By default, reducers
     *  are unaligned (i.e., just naturally aligned), but legacy wrappers
     *  inherit from cache-aligned reducers for binary compatibility.
     *
     *  This means that a wrapper will automatically be upcast to its aligned
     *  reducer base class. The following conversion operators provide
     *  pseudo-upcasts to the corresponding unaligned reducer class.
     */
    //@{
    operator reducer< op_list_append<Type, Allocator, false> >& ()
    {
        return *reinterpret_cast<
            reducer< op_list_append<Type, Allocator, false> >*
            >(this);
    }
    operator const reducer< op_list_append<Type, Allocator, false> >& () const
    {
        return *reinterpret_cast< 
            const reducer< op_list_append<Type, Allocator, false> >* 
            >(this);
    }
    //@}
    
};


/** Deprecated list prepend reducer wrapper class.
 *
 *  reducer_list_prepend is the same as 
 *  @ref reducer<@ref op_list_prepend>, except that reducer_list_prepend is a
 *  proxy for the contained view, so that accumulator variable update operations
 *  can be applied directly to the reducer. For example, an element is prepended
 *  to a `reducer<op_list_prepend>` with `r->push_back(a)`, but an element is
 *  prepended to a `reducer_list_prepend` with `r.push_back(a)`.
 *
 *  @deprecated Users are strongly encouraged to use `reducer<monoid>`
 *              reducers rather than the old wrappers like reducer_list_prepend. 
 *              The `reducer<monoid>` reducers show the reducer/monoid/view
 *              architecture more clearly, are more consistent in their
 *              implementation, and present a simpler model for new
 *              user-implemented reducers.
 *
 *  @note   Implicit conversions are provided between `%reducer_list_prepend` 
 *          and `reducer<%op_list_prepend>`. This allows incremental code
 *          conversion: old code that used `%reducer_list_prepend` can pass a
 *          `%reducer_list_prepend` to a converted function that now expects a
 *          pointer or reference to a `reducer<%op_list_prepend>`, and vice
 *          versa.
 *
 *  @tparam Type        The value type of the list.
 *  @tparam Allocator   The allocator type of the list.
 *
 *  @see op_list_prepend
 *  @see reducer
 *  @see ReducersList
 */
template <class Type, class Allocator = std::allocator<Type> >
class reducer_list_prepend : 
    public reducer<op_list_prepend<Type, Allocator, true> >
{
    typedef reducer<op_list_prepend<Type, Allocator, true> > base;
    using base::view;
public:

    /** The reducer’s list type.
     */
    typedef typename base::value_type list_type;

    /** The list’s element type.
     */
    typedef Type list_value_type;

    /** The reducer’s primitive component type.
     */
    typedef Type basic_value_type;

    /** The monoid type.
     */
    typedef typename base::monoid_type Monoid;

    /** @name Constructors
     */
    //@{
    
    /** Construct a reducer with an empty list.
     */
    reducer_list_prepend() {}

    /** Construct a reducer with a specified initial list value.
     */
    reducer_list_prepend(const std::list<Type, Allocator> &initial_value) : 
        base(initial_value) {}
        
    //@}

    /** @name Forwarded functions
     *  @details Functions that update the contained accumulator variable are
     *  simply forwarded to the contained @ref op_and_view. 
     */
    //@{

    /// @copydoc op_list_prepend_view::push_front(const Type&)
    void push_front(const Type& element) { view().push_front(element); }
    
    //@}

    /** Allow mutable access to the list within the current view.
     * 
     *  @warning    If this method is called before the parallel calculation is
     *              complete, the list returned by this method will be a partial
     *              result.
     * 
     *  @returns    A mutable reference to the list within the current view.
     */
    list_type &get_reference() { return view().view_get_reference(); }

    /** Allow read-only access to the list within the current view.
     * 
     *  @warning    If this method is called before the parallel calculation is
     *              complete, the list returned by this method will be a partial
     *              result.
     * 
     *  @returns    A const reference to the list within the current view.
     */
    list_type const &get_reference() const { return view().view_get_reference(); }

    /// @name Dereference
    /** Dereferencing a wrapper is a no-op. It simply returns the wrapper.
     *  Combined with the rule that a wrapper forwards view operations to the
     *  view, this means that view operations can be written the same way on
     *  reducers and wrappers, which is convenient for incrementally
     *  converting code using wrappers to code using reducers. That is:
     *
     *      reducer< op_list_prepend<int> > r;
     *      r->push_front(a);    // *r returns the view
     *                           // push_front is a view member function
     *
     *      reducer_list_prepend<int> w;
     *      w->push_front(a);    // *w returns the wrapper
     *                           // push_front is a wrapper member function that
     *                           // calls the corresponding view function
     */
    //@{
    reducer_list_prepend&       operator*()       { return *this; }
    reducer_list_prepend const& operator*() const { return *this; }

    reducer_list_prepend*       operator->()       { return this; }
    reducer_list_prepend const* operator->() const { return this; }
    //@}
    
    /** @name Upcast
     *  @details In Cilk library 0.9, reducers were always cache-aligned. In
     *  library  1.0, reducer cache alignment is optional. By default, reducers
     *  are unaligned (i.e., just naturally aligned), but legacy wrappers
     *  inherit from cache-aligned reducers for binary compatibility.
     *
     *  This means that a wrapper will automatically be upcast to its aligned
     *  reducer base class. The following conversion operators provide
     *  pseudo-upcasts to the corresponding unaligned reducer class.
     */
    //@{
    operator reducer< op_list_prepend<Type, Allocator, false> >& ()
    {
        return *reinterpret_cast<
            reducer< op_list_prepend<Type, Allocator, false> >* 
            >(this);
    }
    operator const reducer< op_list_prepend<Type, Allocator, false> >& () const
    {
        return *reinterpret_cast<
            const reducer< op_list_prepend<Type, Allocator, false> >* 
            >(this);
    }
    //@}
    
};

/// @cond internal

/** Metafunction specialization for reducer conversion.
 *
 *  This specialization of the @ref legacy_reducer_downcast template class
 *  defined in reducer.h causes the `reducer< op_list_append<Type, Allocator> >`
 *  class to have an `operator reducer_list_append<Type, Allocator>& ()`
 *  conversion operator that statically downcasts the `reducer<op_list_append>`
 *  to the corresponding `reducer_list_append` type. (The reverse conversion,
 *  from `reducer_list_append` to `reducer<op_list_append>`, is just an upcast,
 *  which is provided for free by the language.)
 */
template <class Type, class Allocator, bool Align>
struct legacy_reducer_downcast<reducer<op_list_append<Type, Allocator, Align> > >
{
    typedef reducer_list_append<Type, Allocator> type;
};

/** Metafunction specialization for reducer conversion.
 *
 *  This specialization of the @ref legacy_reducer_downcast template class
 *  defined in reducer.h causes the
 *  `reducer< op_list_prepend<Type, Allocator> >` class to have an 
 *  `operator reducer_list_prepend<Type, Allocator>& ()` conversion operator
 *  that statically downcasts the `reducer<op_list_prepend>` to the
 *  corresponding `reducer_list_prepend` type. (The reverse conversion, from
 *  `reducer_list_prepend` to `reducer<op_list_prepend>`, is just an upcast,
 *  which is provided for free by the language.)
 */
template <class Type, class Allocator, bool Align>
struct legacy_reducer_downcast<reducer<op_list_prepend<Type, Allocator, Align> > >
{
    typedef reducer_list_prepend<Type, Allocator> type;
};

/// @endcond

//@}

} // Close namespace cilk

#endif //  REDUCER_LIST_H_INCLUDED