/usr/include/gecode/int/circuit/base.hpp is in libgecode-dev 5.1.0-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 | /* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
* Main authors:
* Christian Schulte <schulte@gecode.org>
*
* Copyright:
* Christian Schulte, 2007
*
* Last modified:
* $Date: 2016-04-19 17:19:45 +0200 (Tue, 19 Apr 2016) $ by $Author: schulte $
* $Revision: 14967 $
*
* This file is part of Gecode, the generic constraint
* development environment:
* http://www.gecode.org
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
namespace Gecode { namespace Int { namespace Circuit {
template<class View, class Offset>
forceinline
Base<View,Offset>::Base(Home home, ViewArray<View>& x, Offset& o0)
: NaryPropagator<View,Int::PC_INT_DOM>(home,x),
start(0), y(home,x), o(o0) {
home.notice(*this,AP_WEAKLY);
}
template<class View, class Offset>
forceinline
Base<View,Offset>::Base(Space& home, bool share, Base<View,Offset>& p)
: NaryPropagator<View,Int::PC_INT_DOM>(home,share,p), start(p.start) {
o.update(p.o);
y.update(home,share,p.y);
}
/// Information required for non-recursive checking for a single scc
template<class View>
class NodeInfo {
public:
int min, low, pre;
Int::ViewValues<View> v;
};
/// Information for performing a recorded tell
template<class View>
class TellInfo {
public:
View x; int n;
};
template<class View, class Offset>
ExecStatus
Base<View,Offset>::connected(Space& home) {
int n = x.size();
/// First non-assigned node reachable from start
{
int v = start;
/// Number of nodes not yet visited
int m = n;
while (x[v].assigned()) {
m--;
v = o(x[v]).val();
// Reached start node again, check whether all nodes have been visited
if (start == v)
return (m == 0) ? home.ES_SUBSUMED(*this) : ES_FAILED;
}
start = v;
}
/// Information needed for checking scc's
Region r(home);
typedef typename Offset::ViewType OView;
NodeInfo<OView>* si = r.alloc<NodeInfo<OView> >(n);
unsigned int n_edges = 0;
for (int i=n; i--; ) {
n_edges += x[i].size();
si[i].pre=-1;
}
// Stack to remember which nodes have not been processed completely
Support::StaticStack<int,Region> next(r,n);
// Array to remember which mandatory tells need to be done
TellInfo<OView>* eq = r.alloc<TellInfo<OView> >(n);
int n_eq = 0;
// Array to remember which edges need to be pruned
TellInfo<OView>* nq = r.alloc<TellInfo<OView> >(n_edges);
int n_nq = 0;
/*
* Check whether there is a single strongly connected component.
* This is a downstripped version of Tarjan's algorithm as
* the computation of sccs proper is not needed. In addition, it
* checks a mandatory condition for a graph to be Hamiltonian
* (due to Mats Carlsson).
*
* To quote Mats: Suppose you do a depth-first search of the graph.
* In that search, the root node will have a number of child subtrees
* T1, ..., Tn. By construction, if i<j then there is no edge from
* Ti to Tj. The necessary condition for Hamiltonianicity is that
* there be an edge from Ti+1 to Ti, for 0 < i < n.
*
* In addition, we do the following: if there is only a single edge
* from Ti+1 to Ti, then it must be mandatory and the variable must
* be assigned to that value.
*
* The same holds true for a back edge from T0 to the root node.
*
* Then, all edges that reach from Ti+k+1 to Ti can be pruned.
*
*/
{
// Start always at node start
int i = start;
// Counter for scc
int cnt = 0;
// Smallest preorder number of last subtree (initially, the root node)
int subtree_min = 0;
// Largest preorder number of last subtree (initially, the root node)
int subtree_max = 0;
// Number of back edges into last subtree or root
int back = 0;
start:
si[i].min = si[i].pre = si[i].low = cnt++;
si[i].v.init(o(x[i]));
do {
if (si[si[i].v.val()].pre < 0) {
next.push(i);
i=si[i].v.val();
goto start;
} else if ((subtree_min <= si[si[i].v.val()].pre) &&
(si[si[i].v.val()].pre <= subtree_max)) {
back++;
eq[n_eq].x = o(x[i]);
eq[n_eq].n = si[i].v.val();
} else if (si[si[i].v.val()].pre < subtree_min) {
nq[n_nq].x = o(x[i]);
nq[n_nq].n = si[i].v.val();
n_nq++;
}
cont:
if (si[si[i].v.val()].low < si[i].min)
si[i].min = si[si[i].v.val()].low;
++si[i].v;
} while (si[i].v());
if (si[i].min < si[i].low) {
si[i].low = si[i].min;
} else if (i != start) {
// If it is not the first node visited, there is more than one SCC
return ES_FAILED;
}
if (!next.empty()) {
i=next.pop();
if (i == start) {
// No back edge
if (back == 0)
return ES_FAILED;
// Exactly one back edge, make it mandatory (keep topmost entry)
if (back == 1)
n_eq++;
back = 0;
subtree_min = subtree_max+1;
subtree_max = cnt-1;
}
goto cont;
}
// Whether all nodes have been visited
if (cnt != n)
return ES_FAILED;
/*
* Whether there is more than one subtree
*
* This propagation rule is taken from: Kathryn Glenn Francis,
* Peter Stuckey, Explaining Circuit Propagation,
* Constraints (2014) 19:1-29.
*
*/
if (subtree_min > 1) {
for (Int::ViewValues<OView> v(o(x[start])); v(); ++v)
if (si[v.val()].pre < subtree_min) {
nq[n_nq].x = o(x[v.val()]);
nq[n_nq].n = v.val();
n_nq++;
}
}
ExecStatus es = ES_FIX;
// Assign all mandatory edges
while (n_eq-- > 0) {
ModEvent me = eq[n_eq].x.eq(home,eq[n_eq].n);
if (me_failed(me))
return ES_FAILED;
if (me_modified(me))
es = ES_NOFIX;
}
// Remove all edges that would require a non-simple cycle
while (n_nq-- > 0) {
ModEvent me = nq[n_nq].x.nq(home,nq[n_nq].n);
if (me_failed(me))
return ES_FAILED;
if (me_modified(me))
es = ES_NOFIX;
}
// Move start to different node for next run
start = o(x[start]).min();
return es;
}
}
template<class View, class Offset>
ExecStatus
Base<View,Offset>::path(Space& home) {
// Prunes that partial assigned paths are not completed to cycles
int n=x.size();
Region r(home);
// The path starting at assigned x[i] ends at x[end[j]] which is
// not assigned.
int* end = r.alloc<int>(n);
for (int i=n; i--; )
end[i]=-1;
// A stack that records all indices i such that end[i] != -1
Support::StaticStack<int,Region> tell(r,n);
typedef typename Offset::ViewType OView;
for (int i=y.size(); i--; ) {
assert(!y[i].assigned());
// Non-assigned views serve as starting points for assigned paths
Int::ViewValues<OView> v(o(y[i]));
// Try all connected values
do {
int j0=v.val();
// Starting point for not yet followed assigned path found
if (x[j0].assigned() && (end[j0] < 0)) {
// Follow assigned path until non-assigned view:
// all assigned view on the paths can be skipped, as
// if x[i] is assigned to j, then x[j] will only have
// x[i] as predecessor due to propagating distinct.
int j = j0;
do {
j=o(x[j]).val();
} while (x[j].assigned());
// Now there cannot be a cycle from x[j] to x[v.val()]!
// However, the tell cannot be done here as j might be
// equal to i and might hence kill the iterator v!
end[j0]=j; tell.push(j0);
}
++v;
} while (v());
}
// Now do the tells based on the end information
while (!tell.empty()) {
int i = tell.pop();
assert(end[i] >= 0);
GECODE_ME_CHECK(o(x[end[i]]).nq(home,i));
}
return ES_NOFIX;
}
template<class View, class Offset>
forceinline size_t
Base<View,Offset>::dispose(Space& home) {
home.ignore(*this,AP_WEAKLY);
(void) NaryPropagator<View,Int::PC_INT_DOM>::dispose(home);
return sizeof(*this);
}
}}}
// STATISTICS: int-prop
|