This file is indexed.

/usr/include/gecode/int/gcc/bnd-sup.hpp is in libgecode-dev 5.1.0-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
 *  Main authors:
 *     Patrick Pekczynski <pekczynski@ps.uni-sb.de>
 *
 *  Contributing authors:
 *     Christian Schulte <schulte@gecode.org>
 *     Guido Tack <tack@gecode.org>
 *
 *  Copyright:
 *     Patrick Pekczynski, 2004
 *     Christian Schulte, 2009
 *     Guido Tack, 2009
 *
 *  Last modified:
 *     $Date: 2017-03-08 11:58:56 +0100 (Wed, 08 Mar 2017) $ by $Author: schulte $
 *     $Revision: 15562 $
 *
 *  This file is part of Gecode, the generic constraint
 *  development environment:
 *     http://www.gecode.org
 *
 *  Permission is hereby granted, free of charge, to any person obtaining
 *  a copy of this software and associated documentation files (the
 *  "Software"), to deal in the Software without restriction, including
 *  without limitation the rights to use, copy, modify, merge, publish,
 *  distribute, sublicense, and/or sell copies of the Software, and to
 *  permit persons to whom the Software is furnished to do so, subject to
 *  the following conditions:
 *
 *  The above copyright notice and this permission notice shall be
 *  included in all copies or substantial portions of the Software.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 *  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 *  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 *  NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 *  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 *  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 *  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 */

namespace Gecode { namespace Int { namespace GCC {

  /**
   * \defgroup GCCBndSup Support for GCC bounds propagation
   *
   * \ingroup FuncIntProp
   */

  /**
   * \brief Class for computing unreachable values in the value %GCC propagator
   *
   * \ingroup GCCBndSup
   */
  class UnReachable {
  public:
    /// Number of variables with lower bound
    int minb;
    /// Number of variables with upper bound
    int maxb;
    /// Number of equal variables
    int eq;
    /// Number of smaller variables
    int le;
    /// Number of greater variables
    int gr;
  };

  /**
   * \brief Bounds consistency check for cardinality variables.
   * \ingroup GCCBndSup
   */

  template<class Card>
  ExecStatus
  prop_card(Space& home,
            ViewArray<IntView>& x, ViewArray<Card>& k) {
    int n = x.size();
    int m = k.size();
    Region r(home);
    UnReachable* rv = r.alloc<UnReachable>(m);
    for(int i = m; i--; )
      rv[i].minb=rv[i].maxb=rv[i].le=rv[i].gr=rv[i].eq=0;

    for (int i = n; i--; ) {
      int min_idx;
      if (!lookupValue(k,x[i].min(),min_idx))
        return ES_FAILED;
      if (x[i].assigned()) {
        rv[min_idx].minb++;
        rv[min_idx].maxb++;
        rv[min_idx].eq++;
      } else {
        // count the number of variables
        // with lower bound k[min_idx].card()
        rv[min_idx].minb++;
        int max_idx;
        if (!lookupValue(k,x[i].max(),max_idx))
          return ES_FAILED;
        // count the number of variables
        // with upper bound k[max_idx].card()
        rv[max_idx].maxb++;
      }
    }

    rv[0].le = 0;
    int c_min = 0;
    for (int i = 1; i < m; i++) {
      rv[i].le = c_min + rv[i - 1].maxb;
      c_min += rv[i - 1].maxb;
    }

    rv[m-1].gr = 0;
    int c_max = 0;
    for (int i = m-1; i--; ) {
      rv[i].gr = c_max + rv[i + 1].minb;
      c_max += rv[i + 1].minb;
    }

    for (int i = m; i--; ) {
      int reachable = x.size() - rv[i].le - rv[i].gr;
      if (!k[i].assigned()) {
        GECODE_ME_CHECK(k[i].lq(home, reachable));
        GECODE_ME_CHECK(k[i].gq(home, rv[i].eq));
      } else {
        // check validity of the cardinality value
        if ((rv[i].eq > k[i].max()) || (k[i].max() > reachable))
          return ES_FAILED;
      }
    }

    return ES_OK;
  }


  /** \brief Consistency check, whether the cardinality values are feasible.
   * \ingroup GCCBndSup
   */
  template<class Card>
  forceinline bool
  card_consistent(ViewArray<IntView>& x, ViewArray<Card>& k) {
    int smin = 0;
    int smax = 0;
    for (int i = k.size(); i--; ) {
      smax += k[i].max();
      smin += k[i].min();
    }
    // Consistent if number of variables within cardinality bounds
    return (smin <= x.size()) && (x.size() <= smax);
  }

  /**
   * \brief Maps domain bounds to their position in hall[].bounds.
   * \ingroup GCCBndSup
   */
  class Rank {
  public:
    /**
     * \brief \f$ rank[i].min = z
     * \Leftrightarrow min(x_i) = hall[z].bounds \f$
     */
    int min;
    /**
     * \brief \f$ rank[i].max = z
     * \Leftrightarrow max(x_i) = hall[z].bounds \f$
     */
    int max;
  };

  /**
   * \brief Compares two indices \a i, \a j of two views
   * \a \f$ x_i \f$ \f$ x_j\f$ according to the
   * ascending order of the views upper bounds
   *
   * \ingroup GCCBndSup
   */
  template<class View>
  class MaxInc {
  protected:
    /// View array for comparison
    ViewArray<View> x;
  public:
    /// Constructor
    MaxInc(const ViewArray<View>& x0) : x(x0) {}
    /// Order
    forceinline bool
    operator ()(const int i, const int j) {
      return x[i].max() < x[j].max();
    }
  };


  /**
   * \brief Compares two indices \a i, \a j of two views
   * \a \f$ x_i \f$ \f$ x_j\f$ according to the
   * ascending order of the views lower bounds
   *
   * \ingroup GCCBndSup
   */
  template<class View>
  class MinInc {
  protected:
    /// View array for comparison
    ViewArray<View> x;
  public:
    /// Constructor
    MinInc(const ViewArray<View>& x0) : x(x0) {}
    /// Comparison
    forceinline bool
    operator ()(const int i, const int j) {
      return x[i].min() < x[j].min();
    }
  };


  /**
   * \brief Compares two cardinality views
   * \a \f$ x_i \f$ \f$ x_j\f$ according to the index
   *
   * \ingroup GCCBndSup
   */
  template<class Card>
  class MinIdx {
  public:
    /// Comparison
    forceinline bool
    operator ()(const Card& x, const Card& y) {
      return x.card() < y.card();
    }
  };

  /**
   * \brief Partial sum structure for constant
   *  time computation of the maximal capacity of an interval.
   *
   * \ingroup GCCBndSup
   */
  template<class Card>
  class PartialSum {
  private:
    /// sum[i] contains the partial sum from 0 to i
    int* sum;
    /// the size of the sum
    int size;
  public:
    /// Sentinels indicating whether an end of sum is reached
    int firstValue, lastValue;
    /// \name Initialization
    //@{
    /// Constructor
    PartialSum(void);
    /// Initialization
    void init(Space& home, ViewArray<Card>& k, bool up);
    /// Mark datstructure as requiring reinitialization
    void reinit(void);
    /// Test whether already initialized
    operator bool(void) const;
    //@}
    /// \name Access
    //@{
    /// Compute the maximum capacity of an interval
    int sumup(int from, int to) const;
    /// Return smallest bound of variables
    int minValue(void) const;
    /// Return largest bound of variables
    int maxValue(void) const;
    /// Skip neigbouring array entries if their values do not differ
    int skipNonNullElementsRight(int v) const;
    /// Skip neigbouring array entries if their values do not differ
    int skipNonNullElementsLeft(int v) const;
    //@}
    /// \name Update
    //@{
    /**
     * \brief Check whether the values in the
     *        partial sum structure containting
     *        the lower cardinality bounds differ
     *        from the actual lower bounds of the
     *        cardinalities.
     */
    bool check_update_min(ViewArray<Card>& k);
    /**
     * \brief Check whether the values in the
     *        partial sum structure containting
     *        the upper cardinality bounds differ
     *        from the actual upper bounds of the
     *        cardinalities.
     */
    bool check_update_max(ViewArray<Card>& k);
    //@}
  };


  template<class Card>
  forceinline
  PartialSum<Card>::PartialSum(void) : sum(NULL), size(-1) {}

  template<class Card>
  forceinline
  PartialSum<Card>::operator bool(void) const {
    return size != -1;
  }
  template<class Card>
  inline void
  PartialSum<Card>::init(Space& home, ViewArray<Card>& elements, bool up) {
    int i = 0;
    int j = 0;

    // Determine number of holes in the index set
    int holes = 0;
    for (i = 1; i < elements.size(); i++) {
      if (elements[i].card() != elements[i-1].card() + 1)
        holes += elements[i].card()-elements[i-1].card()-1;
    }

    // we add three elements at the beginning and two at the end
    size  = elements.size() + holes + 5;

    // memory allocation
    if (sum == NULL) {
      sum = home.alloc<int>(2*size);
    }
    int* ds  = &sum[size];

    int first = elements[0].card();

    firstValue = first - 3;
    lastValue  = first + elements.size() + holes + 1;

    // the first three elements
    for (i = 3; i--; )
      sum[i] = i;

    /*
     * copy the bounds into sum, filling up holes with zeroes
     */
    int prevCard = elements[0].card()-1;
    i = 0;
    for (j = 2; j < elements.size() + holes + 2; j++) {
      if (elements[i].card() != prevCard + 1) {
        sum[j + 1] = sum[j];
      } else if (up) {
        sum[j + 1] = sum[j] + elements[i].max();
        i++;
      } else {
        sum[j + 1] = sum[j] + elements[i].min();
        i++;
      }
      prevCard++;
    }
    sum[j + 1] = sum[j] + 1;
    sum[j + 2] = sum[j + 1] + 1;

    // Compute distances, eliminating zeroes
    i = elements.size() + holes + 3;
    j = i + 1;
    for ( ; i > 0; ) {
      while(sum[i] == sum[i - 1]) {
        ds[i] = j;
        i--;
      }
      ds[j] = i;
      i--;
      j = ds[j];
    }
    ds[j] = 0;
    ds[0] = 0;
  }

  template<class Card>
  forceinline void
  PartialSum<Card>::reinit(void) {
    size = -1;
  }


  template<class Card>
  forceinline int
  PartialSum<Card>::sumup(int from, int to) const {
    if (from <= to) {
      return sum[to - firstValue] - sum[from - firstValue - 1];
    } else {
      assert(to - firstValue - 1 >= 0);
      assert(to - firstValue - 1 < size);
      assert(from - firstValue >= 0);
      assert(from - firstValue < size);
      return sum[to - firstValue - 1] - sum[from - firstValue];
    }
  }

  template<class Card>
  forceinline int
  PartialSum<Card>::minValue(void) const {
    return firstValue + 3;
  }
  template<class Card>
  forceinline int
  PartialSum<Card>::maxValue(void) const {
    return lastValue - 2;
  }


  template<class Card>
  forceinline int
  PartialSum<Card>::skipNonNullElementsRight(int value) const {
    value -= firstValue;
    int* ds  = &sum[size];
    return (ds[value] < value ? value : ds[value]) + firstValue;
  }
  template<class Card>
  forceinline int
  PartialSum<Card>::skipNonNullElementsLeft(int value) const {
    value -= firstValue;
    int* ds  = &sum[size];
    return (ds[value] > value ? ds[ds[value]] : value) + firstValue;
  }

  template<class Card>
  inline bool
  PartialSum<Card>::check_update_max(ViewArray<Card>& k) {
    int j = 0;
    for (int i = 3; i < size - 2; i++) {
      int max = 0;
      if (k[j].card() == i+firstValue)
        max = k[j++].max();
      if ((sum[i] - sum[i - 1]) != max)
        return true;
    }
    return false;
  }

  template<class Card>
  inline bool
  PartialSum<Card>::check_update_min(ViewArray<Card>& k) {
    int j = 0;
    for (int i = 3; i < size - 2; i++) {
      int min = 0;
      if (k[j].card() == i+firstValue)
        min = k[j++].min();
      if ((sum[i] - sum[i - 1]) != min)
        return true;
    }
    return false;
  }


  /**
   * \brief Container class provding information about the Hall
   *  structure of the problem variables.
   *
   *  This class is used to
   *  keep the number of different arrays small, that is
   *  an array of type %HallInfo replaces integer arrays for each
   *  of the class members.
   *
   * \ingroup GCCBndSup
   */
  class HallInfo {
  public:
    /// Represents the union of all lower and upper domain bounds
    int bounds;
    /**
     * \brief Critical capacity pointer
     * \a t represents a predecessor function where \f$ t_i \f$ denotes the
     * predecessor of i in bounds
     */
    int t;
    /**
     * \brief Difference between critical capacities
     *
     * \a d_i is the difference between the capacities of hall[i].bounds
     * and its predecessor in bounds hall[t[i]].bounds
     *
     */
    int d;
    /**
     * \brief Hall set pointer
     *
     * If hall[i].h < i then the half-open interval
     * [hall[h[i]].bounds,hall[i].bounds) is containd in a Hall
     * set.
     * Otherwise holds a pointer to the Hall intervall it belongs to.
     */
    int h;
    /// Stable Set pointer
    int s;
    /// Potentially Stable Set pointer
    int ps;
    /**
     * \brief Bound update
     *
     * \a newBound contains either a narrowed domain bound
     * or is stores the old domain bound of a variable.
     */
    int newBound;
  };


  /**
   * \name Path compression
   *
   * Each of the nodes on the path from \a start to \a end
   * becomes a direct child of \a to.
   * \ingroup GCCBndSup
   */
  //@{
  /// Path compression for potentially stable set structure
  forceinline void
  pathset_ps(HallInfo hall[], int start, int end, int to) {
    int k, l;
    for (l=start; (k=l) != end; hall[k].ps=to) {
      l = hall[k].ps;
    }
  }
  /// Path compression for stable set structure
  forceinline void
  pathset_s(HallInfo hall[], int start, int end, int to) {
    int k, l;
    for (l=start; (k=l) != end; hall[k].s=to) {
      l = hall[k].s;
    }
  }
  /// Path compression for capacity pointer structure
  forceinline void
  pathset_t(HallInfo hall[], int start, int end, int to) {
    int k, l;
    for (l=start; (k=l) != end; hall[k].t=to) {
      l = hall[k].t;
    }
  }
  /// Path compression for hall pointer structure
  forceinline void
  pathset_h(HallInfo hall[], int start, int end, int to) {
    int k, l;
    for (l=start; (k=l) != end; hall[k].h=to) {
      l = hall[k].h;
      assert(l != k);
    }
  }
  //@}

  /**
   *  \name Path minimum
   *
   *  Returns the smalles reachable index starting from \a i.
   * \ingroup GCCBndSup
   */
  //@{
  /// Path minimum for hall pointer structure
  forceinline int
  pathmin_h(const HallInfo hall[], int i) {
    while (hall[i].h < i)
      i = hall[i].h;
    return i;
  }
  /// Path minimum for capacity pointer structure
  forceinline int
  pathmin_t(const HallInfo hall[], int i) {
    while (hall[i].t < i)
      i = hall[i].t;
    return i;
  }
  //@}

  /**
   *  \name Path maximum
   *
   *  Returns the greatest reachable index starting from \a i.
   * \ingroup GCCBndSup
   */
  //@{
  /// Path maximum for hall pointer structure
  forceinline int
  pathmax_h(const HallInfo hall[], int i) {
    while (hall[i].h > i)
      i = hall[i].h;
    return i;
  }
  /// Path maximum for capacity pointer structure
  forceinline int
  pathmax_t(const HallInfo hall[], int i) {
    while (hall[i].t > i) {
      i = hall[i].t;
    }
    return i;
  }
  /// Path maximum for stable set pointer structure
  forceinline int
  pathmax_s(const HallInfo hall[], int i) {
    while (hall[i].s > i)
      i = hall[i].s;
    return i;
  }
  /// Path maximum for potentially stable set pointer structure
  forceinline int
  pathmax_ps(const HallInfo hall[], int i) {
    while (hall[i].ps > i)
      i = hall[i].ps;
    return i;
  }
  //@}

}}}

// STATISTICS: int-prop