/usr/include/gecode/int/gcc/dom.hpp is in libgecode-dev 5.1.0-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 | /* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
* Main authors:
* Patrick Pekczynski <pekczynski@ps.uni-sb.de>
*
* Contributing authors:
* Christian Schulte <schulte@gecode.org>
* Guido Tack <tack@gecode.org>
*
* Copyright:
* Patrick Pekczynski, 2004
* Christian Schulte, 2009
* Guido Tack, 2009
*
* Last modified:
* $Date: 2016-06-29 17:28:17 +0200 (Wed, 29 Jun 2016) $ by $Author: schulte $
* $Revision: 15137 $
*
* This file is part of Gecode, the generic constraint
* development environment:
* http://www.gecode.org
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
namespace Gecode { namespace Int { namespace GCC {
/*
* Analogously to "gcc/bnd.hpp" we split the algorithm
* in two parts:
* 1) the UBC (Upper Bound Constraint) stating that there are
* at most k[i].max() occurences of the value v_i
* 2) the LBC (Lower Bound Constraint) stating that there are
* at least k[i].min() occurences of the value v_i
*
* The algorithm proceeds in 5 STEPS:
*
* STEP 1:
* Build the bipartite value-graph G=(<X,D>,E),
* with X = all variable nodes (each variable forms a node)
* D = all value nodes (union over all domains of the variables)
* and (x_i,v) is an edge in G iff value v is in the domain D_i of x_i
*
* STEP 2: Compute a matching in the value graph.
* STEP 3: Compute all even alternating paths from unmatched nodes
* STEP 4: Compute strongly connected components in the merged graph
* STEP 5: Update the Domains according to the computed edges
*
*/
template<class Card>
inline
Dom<Card>::Dom(Home home, ViewArray<IntView>& x0,
ViewArray<Card>& k0, bool cf)
: Propagator(home), x(x0), y(home, x0),
k(k0), vvg(NULL), card_fixed(cf){
// y is used for bounds propagation since prop_bnd needs all variables
// values within the domain bounds
x.subscribe(home, *this, PC_INT_DOM);
k.subscribe(home, *this, PC_INT_DOM);
}
template<class Card>
forceinline
Dom<Card>::Dom(Space& home, bool share, Dom<Card>& p)
: Propagator(home, share, p), vvg(NULL), card_fixed(p.card_fixed) {
x.update(home, share, p.x);
y.update(home, share, p.y);
k.update(home, share, p.k);
}
template<class Card>
forceinline size_t
Dom<Card>::dispose(Space& home) {
x.cancel(home,*this, PC_INT_DOM);
k.cancel(home,*this, PC_INT_DOM);
(void) Propagator::dispose(home);
return sizeof(*this);
}
template<class Card>
Actor*
Dom<Card>::copy(Space& home, bool share) {
return new (home) Dom<Card>(home, share, *this);
}
template<class Card>
PropCost
Dom<Card>::cost(const Space&, const ModEventDelta&) const {
return PropCost::cubic(PropCost::LO, x.size());
}
template<class Card>
void
Dom<Card>::reschedule(Space& home) {
x.reschedule(home, *this, PC_INT_DOM);
k.reschedule(home, *this, PC_INT_DOM);
}
template<class Card>
ExecStatus
Dom<Card>::propagate(Space& home, const ModEventDelta&) {
Region r(home);
int* count = r.alloc<int>(k.size());
for (int i = k.size(); i--; )
count[i] = 0;
// total number of assigned views
int noa = 0;
for (int i = y.size(); i--; )
if (y[i].assigned()) {
noa++;
int idx;
if (!lookupValue(k,y[i].val(),idx))
return ES_FAILED;
count[idx]++;
if (Card::propagate && (k[idx].max() == 0))
return ES_FAILED;
}
if (noa == y.size()) {
// All views are assigned
for (int i = k.size(); i--; ) {
if ((k[i].min() > count[i]) || (count[i] > k[i].max()))
return ES_FAILED;
// the solution contains ci occurences of value k[i].card();
if (Card::propagate)
GECODE_ME_CHECK(k[i].eq(home, count[i]));
}
return home.ES_SUBSUMED(*this);
}
// before propagation performs inferences on cardinality variables:
if (Card::propagate) {
if (noa > 0)
for (int i = k.size(); i--; )
if (!k[i].assigned()) {
GECODE_ME_CHECK(k[i].lq(home, y.size() - (noa - count[i])));
GECODE_ME_CHECK(k[i].gq(home, count[i]));
}
GECODE_ES_CHECK(prop_card<Card>(home,y,k));
if (!card_consistent<Card>(y,k))
return ES_FAILED;
}
if (x.size() == 0) {
for (int j = k.size(); j--; )
if ((k[j].min() > k[j].counter()) || (k[j].max() < k[j].counter()))
return ES_FAILED;
return home.ES_SUBSUMED(*this);
} else if ((x.size() == 1) && (x[0].assigned())) {
int idx;
if (!lookupValue(k,x[0].val(),idx))
return ES_FAILED;
GECODE_ME_CHECK(k[idx].inc());
for (int j = k.size(); j--; )
if ((k[j].min() > k[j].counter()) || (k[j].max() < k[j].counter()))
return ES_FAILED;
return home.ES_SUBSUMED(*this);
}
if (vvg == NULL) {
int smin = 0;
int smax = 0;
for (int i=k.size(); i--; )
if (k[i].counter() > k[i].max() ) {
return ES_FAILED;
} else {
smax += (k[i].max() - k[i].counter());
if (k[i].counter() < k[i].min())
smin += (k[i].min() - k[i].counter());
}
if ((x.size() < smin) || (smax < x.size()))
return ES_FAILED;
vvg = new (home) VarValGraph<Card>(home, x, k, smin, smax);
GECODE_ES_CHECK(vvg->min_require(home,x,k));
GECODE_ES_CHECK(vvg->template maximum_matching<UBC>(home));
if (!card_fixed)
GECODE_ES_CHECK(vvg->template maximum_matching<LBC>(home));
} else {
GECODE_ES_CHECK(vvg->sync(home,x,k));
}
vvg->template free_alternating_paths<UBC>(home);
vvg->template strongly_connected_components<UBC>(home);
GECODE_ES_CHECK(vvg->template narrow<UBC>(home,x,k));
if (!card_fixed) {
if (Card::propagate)
GECODE_ES_CHECK(vvg->sync(home,x,k));
vvg->template free_alternating_paths<LBC>(home);
vvg->template strongly_connected_components<LBC>(home);
GECODE_ES_CHECK(vvg->template narrow<LBC>(home,x,k));
}
{
bool card_assigned = true;
if (Card::propagate) {
GECODE_ES_CHECK(prop_card<Card>(home, y, k));
card_assigned = k.assigned();
}
if (card_assigned) {
if (x.size() == 0) {
for (int j=k.size(); j--; )
if ((k[j].min() > k[j].counter()) ||
(k[j].max() < k[j].counter()))
return ES_FAILED;
return home.ES_SUBSUMED(*this);
} else if ((x.size() == 1) && x[0].assigned()) {
int idx;
if (!lookupValue(k,x[0].val(),idx))
return ES_FAILED;
GECODE_ME_CHECK(k[idx].inc());
for (int j = k.size(); j--; )
if ((k[j].min() > k[j].counter()) ||
(k[j].max() < k[j].counter()))
return ES_FAILED;
return home.ES_SUBSUMED(*this);
}
}
}
for (int i = k.size(); i--; )
count[i] = 0;
bool all_assigned = true;
// total number of assigned views
for (int i = y.size(); i--; )
if (y[i].assigned()) {
int idx;
if (!lookupValue(k,y[i].val(),idx))
return ES_FAILED;
count[idx]++;
if (Card::propagate && (k[idx].max() == 0))
return ES_FAILED;
} else {
all_assigned = false;
}
if (Card::propagate)
GECODE_ES_CHECK(prop_card<Card>(home, y, k));
if (all_assigned) {
for (int i = k.size(); i--; ) {
if ((k[i].min() > count[i]) || (count[i] > k[i].max()))
return ES_FAILED;
// the solution contains count[i] occurences of value k[i].card();
if (Card::propagate)
GECODE_ME_CHECK(k[i].eq(home,count[i]));
}
return home.ES_SUBSUMED(*this);
}
if (Card::propagate) {
int ysmax = y.size();
for (int i=k.size(); i--; )
ysmax -= k[i].max();
int smax = 0;
bool card_ass = true;
for (int i = k.size(); i--; ) {
GECODE_ME_CHECK(k[i].gq(home, ysmax + k[i].max()));
smax += k[i].max();
GECODE_ME_CHECK(k[i].lq(home, y.size() + k[i].min()));
if (!k[i].assigned())
card_ass = false;
}
if (card_ass && (smax != y.size()))
return ES_FAILED;
}
return Card::propagate ? ES_NOFIX : ES_FIX;
}
template<class Card>
inline ExecStatus
Dom<Card>::post(Home home,
ViewArray<IntView>& x, ViewArray<Card>& k) {
GECODE_ES_CHECK((postSideConstraints<Card>(home,x,k)));
if (isDistinct<Card>(home, x, k))
return Distinct::Dom<IntView>::post(home,x);
bool cardfix = true;
for (int i = k.size(); i--; )
if (!k[i].assigned()) {
cardfix = false; break;
}
(void) new (home) Dom<Card>(home,x,k,cardfix);
return ES_OK;
}
}}}
// STATISTICS: int-prop
|