This file is indexed.

/usr/include/gecode/int/linear/post.hpp is in libgecode-dev 5.1.0-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
 *  Main authors:
 *     Christian Schulte <schulte@gecode.org>
 *
 *  Copyright:
 *     Christian Schulte, 2002
 *
 *  Last modified:
 *     $Date: 2016-04-19 17:19:45 +0200 (Tue, 19 Apr 2016) $ by $Author: schulte $
 *     $Revision: 14967 $
 *
 *  This file is part of Gecode, the generic constraint
 *  development environment:
 *     http://www.gecode.org
 *
 *  Permission is hereby granted, free of charge, to any person obtaining
 *  a copy of this software and associated documentation files (the
 *  "Software"), to deal in the Software without restriction, including
 *  without limitation the rights to use, copy, modify, merge, publish,
 *  distribute, sublicense, and/or sell copies of the Software, and to
 *  permit persons to whom the Software is furnished to do so, subject to
 *  the following conditions:
 *
 *  The above copyright notice and this permission notice shall be
 *  included in all copies or substantial portions of the Software.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 *  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 *  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 *  NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 *  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 *  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 *  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 */

#include <algorithm>
#include <climits>

namespace Gecode { namespace Int { namespace Linear {

  template<class View>
  inline void
  estimate(Term<View>* t, int n, int c, int& l, int &u) {
    long long int min = c;
    long long int max = c;
    for (int i=n; i--; ) {
      long long int a = t[i].a;
      if (a > 0) {
        min += a*t[i].x.min();
        max += a*t[i].x.max();
      } else {
        max += a*t[i].x.min();
        min += a*t[i].x.max();
      }
    }
    if (min < Limits::min)
      min = Limits::min;
    if (min > Limits::max)
      min = Limits::max;
    l = static_cast<int>(min);
    if (max < Limits::min)
      max = Limits::min;
    if (max > Limits::max)
      max = Limits::max;
    u = static_cast<int>(max);
  }

  /// Sort linear terms by view
  template<class View>
  class TermLess {
  public:
    forceinline bool
    operator ()(const Term<View>& a, const Term<View>& b) {
      return before(a.x,b.x);
    }
  };

  /// Compute the greatest common divisor of \a a and \a b
  inline int
  gcd(int a, int b) {
    if (b > a)
      std::swap(a,b);
    while (b > 0) {
      int t = b; b = a % b; a = t;
    }
    return a;
  }



  /** \brief Normalize linear integer constraints
   *
   * \param t array of linear terms
   * \param n size of array
   * \param t_p array of linear terms over integers with positive coefficients
   * \param n_p number of postive terms
   * \param t_n array of linear terms over integers with negative coefficients
   * \param n_n number of negative terms
   * \param gcd greatest common divisor of all coefficients
   *
   * Replaces all negative coefficients by positive coefficients.
   *
   *  - Variables occuring multiply in the term array are replaced
   *    by a single occurence: for example, \f$ax+bx\f$ becomes
   *    \f$(a+b)x\f$.
   *  - If in the above simplification the value for \f$(a+b)\f$ (or for
   *    \f$a\f$ and \f$b\f$) exceeds the limits for integers as
   *    defined in Limits::Int, an exception of type
   *    Int::NumericalOverflow is thrown.
   *  - Divides all coefficients by their greatest common divisor and
   *    returns the gcd \a g
   *
   * Returns true, if all coefficients are unit coefficients
   */
  template<class View>
  inline bool
  normalize(Term<View>* t, int &n,
            Term<View>* &t_p, int &n_p,
            Term<View>* &t_n, int &n_n,
            int& g) {
    /*
     * Join coefficients for aliased variables:
     *
     */
    {
      // Group same variables
      TermLess<View> tl;
      Support::quicksort<Term<View>,TermLess<View> >(t,n,tl);

      // Join adjacent variables
      int i = 0;
      int j = 0;
      while (i < n) {
        Limits::check(t[i].a,"Int::linear");
        long long int a = t[i].a;
        View x = t[i].x;
        while ((++i < n) && same(t[i].x,x)) {
          a += t[i].a;
          Limits::check(a,"Int::linear");
        }
        if (a != 0) {
          t[j].a = static_cast<int>(a); t[j].x = x; j++;
        }
      }
      n = j;
    }

    /*
     * Partition into positive/negative coefficents
     *
     */
    if (n > 0) {
      int i = 0;
      int j = n-1;
      while (true) {
        while ((t[j].a < 0) && (--j >= 0)) ;
        while ((t[i].a > 0) && (++i <  n)) ;
        if (j <= i) break;
        std::swap(t[i],t[j]);
      }
      t_p = t;     n_p = i;
      t_n = t+n_p; n_n = n-n_p;
    } else {
      t_p = t; n_p = 0;
      t_n = t; n_n = 0;
    }

    /*
     * Make all coefficients positive
     *
     */
    for (int i=n_n; i--; )
      t_n[i].a = -t_n[i].a;

    /*
     * Compute greatest common divisor
     *
     */
    if ((n > 0) && (g > 0)) {
      g = t[0].a;
      for (int i=1; (g > 1) && (i < n); i++)
        g = gcd(t[i].a,g);
      if (g > 1)
        for (int i=n; i--; )
          t[i].a /= g;
    } else {
      g = 1;
    }

    /*
     * Test for unit coefficients only
     *
     */
    for (int i=n; i--; )
      if (t[i].a != 1)
        return false;
    return true;
  }

}}}

// STATISTICS: int-post