This file is indexed.

/usr/share/criterion/templates/default.tpl is in libghc-criterion-dev 1.1.4.0-1build5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
 <head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
    <title>criterion report</title>
    <script language="javascript" type="text/javascript">
      {{js-jquery}}
    </script>
    <script language="javascript" type="text/javascript">
      {{js-flot}}
    </script>
    <script language="javascript" type="text/javascript">
      {{#include}}js/jquery.criterion.js{{/include}}
    </script>
    <style type="text/css">
{{#include}}criterion.css{{/include}}
    </style>
    <!--[if !IE 7]>
	    <style type="text/css">
		    #wrap {display:table;height:100%}
	    </style>
    <![endif]-->
 </head>
    <body>
     <div id="wrap">
      <div id="main" class="body">
    <h1>criterion performance measurements</h1>

<h2>overview</h2>

<p><a href="#grokularation">want to understand this report?</a></p>

<div id="overview" class="ovchart" style="width:900px;height:100px;"></div>

{{#report}}
<h2><a name="b{{number}}">{{name}}</a></h2>
 <table width="100%">
  <tbody>
   <tr>
    <td><div id="kde{{number}}" class="kdechart"
             style="width:450px;height:278px;"></div></td>
    <td><div id="time{{number}}" class="timechart"
             style="width:450px;height:278px;"></div></td>
<!--
    <td><div id="cycle{{number}}" class="cyclechart"
             style="width:300px;height:278px;"></div></td>
-->
   </tr>
  </tbody>
 </table>

 <table>
  <thead class="analysis">
   <th></th>
   <th class="cibound"
       title="{{anMean.estConfidenceLevel}} confidence level">lower bound</th>
   <th>estimate</th>
   <th class="cibound"
       title="{{anMean.estConfidenceLevel}} confidence level">upper bound</th>
  </thead>
  <tbody>
   <tr>
    <td>OLS regression</td>
    <td><span class="confinterval olstimelb{{number}}">xxx</span></td>
    <td><span class="olstimept{{number}}">xxx</span></td>
    <td><span class="confinterval olstimeub{{number}}">xxx</span></td>
   </tr>
   <tr>
    <td>R&#xb2; goodness-of-fit</td>
    <td><span class="confinterval olsr2lb{{number}}">xxx</span></td>
    <td><span class="olsr2pt{{number}}">xxx</span></td>
    <td><span class="confinterval olsr2ub{{number}}">xxx</span></td>
   </tr>
   <tr>
    <td>Mean execution time</td>
    <td><span class="confinterval citime">{{anMean.estLowerBound}}</span></td>
    <td><span class="time">{{anMean.estPoint}}</span></td>
    <td><span class="confinterval citime">{{anMean.estUpperBound}}</span></td>
   </tr>
   <tr>
    <td>Standard deviation</td>
    <td><span class="confinterval citime">{{anStdDev.estLowerBound}}</span></td>
    <td><span class="time">{{anStdDev.estPoint}}</span></td>
    <td><span class="confinterval citime">{{anStdDev.estUpperBound}}</span></td>
   </tr>
  </tbody>
 </table>

 <span class="outliers">
   <p>Outlying measurements have {{anOutlierVar.ovDesc}}
     (<span class="percent">{{anOutlierVar.ovFraction}}</span>%)
     effect on estimated standard deviation.</p>
 </span>
{{/report}}

 <h2><a name="grokularation">understanding this report</a></h2>

 <p>In this report, each function benchmarked by criterion is assigned
   a section of its own.  The charts in each section are active; if
   you hover your mouse over data points and annotations, you will see
   more details.</p>

 <ul>
   <li>The chart on the left is a
     <a href="http://en.wikipedia.org/wiki/Kernel_density_estimation">kernel
       density estimate</a> (also known as a KDE) of time
     measurements.  This graphs the probability of any given time
     measurement occurring.  A spike indicates that a measurement of a
     particular time occurred; its height indicates how often that
     measurement was repeated.</li>

   <li>The chart on the right is the raw data from which the kernel
     density estimate is built.  The <i>x</i> axis indicates the
     number of loop iterations, while the <i>y</i> axis shows measured
     execution time for the given number of loop iterations.  The
     line behind the values is the linear regression prediction of
     execution time for a given number of iterations. Ideally, all
     measurements will be on (or very near) this line.</li>
 </ul>

 <p>Under the charts is a small table.
   The first two rows are the results of a linear regression run
     on the measurements displayed in the right-hand chart.</p>

 <ul>
   <li><i>OLS regression</i> indicates the
     time estimated for a single loop iteration using an ordinary
     least-squares regression model.  This number is more accurate
     than the <i>mean</i> estimate below it, as it more effectively
     eliminates measurement overhead and other constant factors.</li>
   <li><i>R&#xb2; goodness-of-fit</i> is a measure of how
     accurately the linear regression model fits the observed
     measurements.  If the measurements are not too noisy, R&#xb2;
     should lie between 0.99 and 1, indicating an excellent fit. If
     the number is below 0.99, something is confounding the accuracy
     of the linear model.</li>
   <li><i>Mean execution time</i> and <i>standard deviation</i> are
     statistics calculated from execution time
     divided by number of iterations.</li>
 </ul>

 <p>We use a statistical technique called
   the <a href="http://en.wikipedia.org/wiki/Bootstrapping_(statistics)">bootstrap</a>
   to provide confidence intervals on our estimates.  The
   bootstrap-derived upper and lower bounds on estimates let you see
   how accurate we believe those estimates to be.  (Hover the mouse
   over the table headers to see the confidence levels.)</p>

 <p>A noisy benchmarking environment can cause some or many
   measurements to fall far from the mean.  These outlying
   measurements can have a significant inflationary effect on the
   estimate of the standard deviation.  We calculate and display an
   estimate of the extent to which the standard deviation has been
   inflated by outliers.</p>

<script type="text/javascript">
$(function () {
  function mangulate(rpt) {
    var measured = function(key) {
      var idx = rpt.reportKeys.indexOf(key);
      return rpt.reportMeasured.map(function(r) { return r[idx]; });
    };
    var number = rpt.reportNumber;
    var name = rpt.reportName;
    var mean = rpt.reportAnalysis.anMean.estPoint;
    var iters = measured("iters");
    var times = measured("time");
    var kdetimes = rpt.reportKDEs[0].kdeValues;
    var kdepdf = rpt.reportKDEs[0].kdePDF;

    var meanSecs = mean;
    var units = $.timeUnits(mean);
    var rgrs = rpt.reportAnalysis.anRegress[0];
    var scale = units[0];
    var olsTime = rgrs.regCoeffs.iters;
    $(".olstimept" + number).text(function() {
        return $.renderTime(olsTime.estPoint);
      });
    $(".olstimelb" + number).text(function() {
        return $.renderTime(olsTime.estLowerBound);
      });
    $(".olstimeub" + number).text(function() {
        return $.renderTime(olsTime.estUpperBound);
      });
    $(".olsr2pt" + number).text(function() {
        return rgrs.regRSquare.estPoint.toFixed(3);
      });
    $(".olsr2lb" + number).text(function() {
        return rgrs.regRSquare.estLowerBound.toFixed(3);
      });
    $(".olsr2ub" + number).text(function() {
        return rgrs.regRSquare.estUpperBound.toFixed(3);
      });
    mean *= scale;
    kdetimes = $.scaleBy(scale, kdetimes);
    var kq = $("#kde" + number);
    var k = $.plot(kq,
           [{ label: name + " time densities",
              data: $.zip(kdetimes, kdepdf),
              }],
           { xaxis: { tickFormatter: $.unitFormatter(scale) },
             yaxis: { ticks: false },
             grid: { borderColor: "#777",
                     hoverable: true, markings: [ { color: '#6fd3fb',
                     lineWidth: 1.5, xaxis: { from: mean, to: mean } } ] },
           });
    var o = k.pointOffset({ x: mean, y: 0});
    kq.append('<div class="meanlegend" title="' + $.renderTime(meanSecs) +
              '" style="position:absolute;left:' + (o.left + 4) +
              'px;bottom:139px;">mean</div>');
    $.addTooltip("#kde" + number,
                 function(secs) { return $.renderTime(secs / scale); });
    var timepairs = new Array(times.length);
    var lastiter = iters[iters.length-1];
    var olspairs = [[0,0], [lastiter, lastiter * scale * olsTime.estPoint]];
    for (var i = 0; i < times.length; i++)
      timepairs[i] = [iters[i],times[i]*scale];
    iterFormatter = function() {
      var denom = 0;
      return function(iters) {
	if (iters == 0)
          return '';
	if (denom > 0)
	  return (iters / denom).toFixed();
        var power;
	if (iters >= 1e9) {
	    denom = '1e9'; power = '&#x2079;';
        }
	if (iters >= 1e6) {
	    denom = '1e6'; power = '&#x2076;';
        }
        else if (iters >= 1e3) {
            denom = '1e3'; power = '&#xb3;';
        }
        else denom = 1;
        if (denom > 1) {
          iters = (iters / denom).toFixed();
	  iters += '&times;10' + power + ' iters';
        } else {
          iters += ' iters';
        }
        return iters;
      };
    };
    $.plot($("#time" + number),
           [{ label: "regression", data: olspairs,
              lines: { show: true } },
            { label: name + " times", data: timepairs,
              points: { show: true } }],
            { grid: { borderColor: "#777", hoverable: true },
              xaxis: { tickFormatter: iterFormatter() },
              yaxis: { tickFormatter: $.unitFormatter(scale) } });
    $.addTooltip("#time" + number,
		 function(iters,secs) {
		   return ($.renderTime(secs / scale) + ' / ' +
			   iters.toLocaleString() + ' iters');
		 });
    if (0) {
      var cyclepairs = new Array(cycles.length);
      for (var i = 0; i < cycles.length; i++)
	cyclepairs[i] = [cycles[i],i];
      $.plot($("#cycle" + number),
	     [{ label: name + " cycles",
		data: cyclepairs }],
	     { points: { show: true },
	       grid: { borderColor: "#777", hoverable: true },
	       xaxis: { tickFormatter:
			function(cycles,axis) { return cycles + ' cycles'; }},
	       yaxis: { ticks: false },
	     });
      $.addTooltip("#cycles" + number, function(x,y) { return x + ' cycles'; });
    }
  };
  var reports = {{json}};
  reports.map(mangulate);

  var benches = [{{#report}}"{{name}}",{{/report}}];
  var ylabels = [{{#report}}[-{{number}},'<a href="#b{{number}}">{{name}}</a>'],{{/report}}];
  var means = $.scaleTimes([{{#report}}{{anMean.estPoint}},{{/report}}]);
  var xs = [];
  var prev = null;
  for (var i = 0; i < means[0].length; i++) {
    var name = benches[i].split(/\//);
    name.pop();
    name = name.join('/');
    if (name != prev) {
      xs.push({ label: name, data: [[means[0][i], -i]]});
      prev = name;
    }
    else
      xs[xs.length-1].data.push([means[0][i],-i]);
  }
  var oq = $("#overview");
  o = $.plot(oq, xs, { bars: { show: true, horizontal: true,
                               barWidth: 0.75, align: "center" },
                       grid: { borderColor: "#777", hoverable: true },
                       legend: { show: xs.length > 1 },
                       xaxis: { max: Math.max.apply(undefined,means[0]) * 1.02 },
                       yaxis: { ticks: ylabels, tickColor: '#ffffff' } });
  if (benches.length > 3)
    o.getPlaceholder().height(28*benches.length);
  o.resize();
  o.setupGrid();
  o.draw();
  $.addTooltip("#overview", function(x,y) { return $.renderTime(x / means[1]); });
});
$(document).ready(function () {
    $(".time").text(function(_, text) {
        return $.renderTime(text);
      });
    $(".citime").text(function(_, text) {
        return $.renderTime(text);
      });
    $(".percent").text(function(_, text) {
        return (text*100).toFixed(1);
      });
  });
</script>

   </div>
  </div>
  <div id="footer">
    <div class="body">
     <div class="footfirst">
      <h2>colophon</h2>
      <p>This report was created using the
	<a href="http://hackage.haskell.org/package/criterion">criterion</a>
	benchmark execution and performance analysis tool.</p>
      <p>Criterion is developed and maintained
      by <a href="http://www.serpentine.com/blog/">Bryan O'Sullivan</a>.</p>
     </div>
    </div>
  </div>
 </body>
</html>