/usr/include/ghemical/v3d.h is in libghemical-dev 3.0.0-4.1build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 | // V3D.H : easy-to-use 3D-vector class and coordinate transformations.
// Copyright (C) 1998 Tommi Hassinen.
// This package is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
// This package is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this package; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
/*################################################################################################*/
#ifndef V3D_H
#define V3D_H
/*################################################################################################*/
#include <math.h>
#include <iostream>
using namespace std;
/*################################################################################################*/
/** A three-dimensional vector class.
Parameters to functions should be chosen this way:
len <-this-=
ang <-this-= =-prm1->
tor <-this-= =-prm1-> =-prm2->
tor: direction of the angle is in accordance with the IUPAC convention
(clockwise rotation of "this" to eclipse "v2" is the positive direction)
and the range of the results is [-pi,+pi].
vpr: cross product "this * v1 = v2" is right-handed.
*/
// use the try->throw->catch -system here??? is it a reasonable solution here at all???
// use the try->throw->catch -system here??? is it a reasonable solution here at all???
// use the try->throw->catch -system here??? is it a reasonable solution here at all???
template <class TYPE1> class v3d
{
public:
TYPE1 data[3]; // public is ok here, this is used everywhere...
public:
v3d(void) { }
v3d(const TYPE1 * p1)
{
for (int n1 = 0;n1 < 3;n1++) data[n1] = p1[n1];
}
v3d(const TYPE1 * p1, const TYPE1 * p2)
{
for (int n1 = 0;n1 < 3;n1++) data[n1] = p2[n1] - p1[n1];
}
v3d(TYPE1 p1, TYPE1 p2, TYPE1 p3)
{
data[0] = p1;
data[1] = p2;
data[2] = p3;
}
~v3d(void) { }
TYPE1 len(void) const
{
TYPE1 sum = 0.0;
for (int n1 = 0;n1 < 3;n1++) sum += data[n1] * data[n1];
return sqrt(sum);
}
TYPE1 ang(const v3d<TYPE1> & v1) const
{
TYPE1 denom = len() * v1.len();
if (denom != 0.0)
{
TYPE1 cosine = spr(v1) / denom;
if (cosine < -1.0) cosine = -1.0; // domain check...
if (cosine > +1.0) cosine = +1.0; // domain check...
return acos(cosine);
}
else
{
cout << "problems: zero division in v3d<TYPE1>::ang !!!" << endl;
return 0.0;
}
}
TYPE1 tor(const v3d<TYPE1> & v1, const v3d<TYPE1> & v2) const
{
TYPE1 temp = v1.len();
TYPE1 denom = temp * temp;
if (denom != 0.0)
{
v3d<TYPE1> v3 = v2 - (v1 * (v1.spr(v2) / denom));
v3d<TYPE1> v4 = (* this) - (v1 * (v1.spr(* this) / denom));
return (v1.vpr(v4)).spr(v3) < 0.0 ? -v3.ang(v4) : +v3.ang(v4);
}
else
{
cout << "problems: zero division in v3d<TYPE1>::tor !!!" << endl;
return 0.0;
}
}
TYPE1 spr(const v3d<TYPE1> & v1) const
{
TYPE1 sum = 0.0;
for (int n1 = 0;n1 < 3;n1++) sum += data[n1] * v1.data[n1];
return sum;
}
v3d<TYPE1> vpr(const v3d<TYPE1> & v1) const
{
v3d<TYPE1> v2;
v2.data[0] = data[1] * v1.data[2] - data[2] * v1.data[1];
v2.data[1] = data[2] * v1.data[0] - data[0] * v1.data[2];
v2.data[2] = data[0] * v1.data[1] - data[1] * v1.data[0];
return v2;
}
v3d<TYPE1> operator+(const v3d<TYPE1> & v1) const
{
v3d<TYPE1> v2;
for (int n1 = 0;n1 < 3;n1++) v2.data[n1] = data[n1] + v1.data[n1];
return v2;
}
v3d<TYPE1> operator-(const v3d<TYPE1> & v1) const
{
v3d<TYPE1> v2;
for (int n1 = 0;n1 < 3;n1++) v2.data[n1] = data[n1] - v1.data[n1];
return v2;
}
v3d<TYPE1> operator*(TYPE1 p1) const
{
v3d<TYPE1> v2;
for (int n1 = 0;n1 < 3;n1++) v2.data[n1] = data[n1] * p1;
return v2;
}
v3d<TYPE1> operator/(TYPE1 p1) const
{
v3d<TYPE1> v2;
for (int n1 = 0;n1 < 3;n1++) v2.data[n1] = data[n1] / p1;
return v2;
}
TYPE1 & operator[](int p1) const
{
return (TYPE1 &) data[p1];
}
friend ostream & operator<<(ostream & p1, const v3d<TYPE1> & p2)
{
p1 << "x = " << p2.data[0] << ", y = " << p2.data[1] << ", z = " << p2.data[2];
return p1;
}
};
/*################################################################################################*/
/** A function to convert cartesian coordinates into polar ones.
ang1: 0.0 - 180.0 degrees, starting from the z-axis.
ang2: 0.0 - 360.0 degrees, from the x-axis, to the direction of y-axis.
*/
// those domain checks are quite useful here...
// those domain checks are quite useful here...
// those domain checks are quite useful here...
template <class TYPE1> void crt2pol(TYPE1 * crt, TYPE1 * pol)
{
pol[0] = sqrt((crt[0] * crt[0]) + (crt[1] * crt[1]) + (crt[2] * crt[2]));
TYPE1 tmp1 = crt[2] / pol[0];
if (tmp1 < -1.0) tmp1 = -1.0; // domain check...
if (tmp1 > +1.0) tmp1 = +1.0; // domain check...
pol[1] = acos(tmp1);
TYPE1 tmp2 = sin(pol[1]);
if (tmp2 != 0.0)
{
TYPE1 tmp3 = pol[0] * tmp2;
tmp1 = crt[0] / (tmp3);
if (tmp1 < -1.0) tmp1 = -1.0; // domain check...
if (tmp1 > +1.0) tmp1 = +1.0; // domain check...
TYPE1 ang1 = acos(tmp1);
tmp1 = crt[1] / (tmp3);
if (tmp1 < -1.0) tmp1 = -1.0; // domain check...
if (tmp1 > +1.0) tmp1 = +1.0; // domain check...
TYPE1 ang2 = asin(tmp1);
pol[2] = (ang2 < 0.0 ? 2.0 * M_PI - ang1 : ang1);
}
else pol[2] = 0.0; // actually this is not defined???
}
/** A function to convert polar coordinates into cartesian ones.
ang1: 0.0 - 180.0 degrees, starting from the z-axis.
ang2: 0.0 - 360.0 degrees, from the x-axis, to the direction of y-axis.
*/
template <class TYPE1> void pol2crt(TYPE1 * pol, TYPE1 * crt)
{
crt[0] = pol[0] * sin(pol[1]) * cos(pol[2]);
crt[1] = pol[0] * sin(pol[1]) * sin(pol[2]);
crt[2] = pol[0] * cos(pol[1]);
}
/*################################################################################################*/
#endif // V3D_H
// eof
|