This file is indexed.

/usr/include/giac/gen.h is in libgiac-dev 1.2.3.57+dfsg1-2build3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
// -*- mode:C++ ; compile-command: "g++ -I.. -g -c -DHAVE_CONFIG_H -DIN_GIAC gen.cc" -*-
/*
 *  Copyright (C) 2001,2014 B. Parisse, Institut Fourier, 38402 St Martin d'Heres
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program. If not, see <http://www.gnu.org/licenses/>.
 */
#ifndef _GIAC_GEN_H
#define _GIAC_GEN_H

/* Warning: the size of a gen depend on the architecture and of compile-time flags
   Define -DSMARTPTR64 on 64 bit CPU if the pointers allocated by new are 48 bits
   this will make sizeof(gen)==8 instead of 16
   Currently the address of pointers is obtained by using the reserved and val fields
   (48 bits) and adding 00 for the most significant bits
   On systems that use pointers above 0x00ffffffff it might be better to use a table 
   of most significants 32 bits addresses (refered by the reserved field) 
   and use the val field for offset.
   Define -DDOUBLEVAL if you did not define SMARTPTR64 and want full double precision
   (53 bit mantissa). Otherwise, the 8 less significant bits will be used for the type
   field of a gen, i.e. 0x01 for a double, hence 45 bit mantissa will be used for doubles
   Using full double precision increases sizeof(gen) to 12 on a 32 bits CPU 
   (and 16 on a 64 bits CPU)
 */

// FIXME: macros defined in config.h are not welcome in a public header!
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "first.h"

// #include <gmp.h>
#ifdef USE_GMP_REPLACEMENTS
#undef HAVE_GMPXX_H
#undef HAVE_LIBMPFR
#endif
#ifdef HAVE_GMPXX_H
#include <gmpxx.h>
#endif
#ifdef HAVE_LIBMPFR
#include <mpfr.h>
// #include <mpf2mpfr.h>
#endif
#ifdef HAVE_LIBMPFI
#include <mpfi.h>
#endif
#include <iostream>
#include <string>
#include "vector.h"
#include <map>
#include "dispatch.h"
#include "vecteur.h"
#include "fraction.h"
#include "poly.h"
#include "giacintl.h"
#include <complex>
#include <stdlib.h>
#ifdef STATIC_BUILTIN_LEXER_FUNCTIONS
#include "static.h"
#endif

#ifndef NO_NAMESPACE_GIAC
namespace giac {
#endif // ndef NO_NAMESPACE_GIAC


#ifdef USE_GMP_REPLACEMENTS
#undef HAVE_GMPXX_H
#undef HAVE_LIBMPFR
#endif

  void my_mpz_gcd(mpz_t &z,const mpz_t & A,const mpz_t & B);

  class gen ; 
  // errors
  void settypeerr(GIAC_CONTEXT0);
  void setsizeerr(GIAC_CONTEXT0);
  void setdimerr(GIAC_CONTEXT0);
  void settypeerr(const std::string & s);
  void setsizeerr(const std::string & s);
  void setdimerr(const std::string & s);
  void divisionby0err(const gen &,GIAC_CONTEXT0);
  void cksignerr(const gen &,GIAC_CONTEXT0);
  void invalidserieserr(const std::string &,GIAC_CONTEXT0);
  void toofewargs(const std::string & s,GIAC_CONTEXT0);
  void toomanyargs(const std::string & s,GIAC_CONTEXT0);
  void maxordererr(GIAC_CONTEXT0);
  void setstabilityerr(GIAC_CONTEXT0);

  gen undeferr(const std::string & s);
  gen gentypeerr(GIAC_CONTEXT0);
  void gentypeerr(gen & g,GIAC_CONTEXT);
  gen gensizeerr(GIAC_CONTEXT0);
  void gensizeerr(gen & g,GIAC_CONTEXT);
  gen gendimerr(GIAC_CONTEXT0);
  void gendimerr(gen & g,GIAC_CONTEXT);
  gen gentypeerr(const std::string & s);
  void gentypeerr(const char * ch,gen & g);
  gen gensizeerr(const std::string & s);
  void gensizeerr(const char * ch,gen & g);
  gen gendimerr(const std::string & s);
  void gensizeerr(const char * ch,gen & g);
  gen gendivisionby0err(const gen &,GIAC_CONTEXT0);
  gen gencksignerr(const gen &,GIAC_CONTEXT0);
  gen geninvalidserieserr(const std::string &,GIAC_CONTEXT0);
  gen gentoofewargs(const std::string & s,GIAC_CONTEXT0);
  gen gentoomanyargs(const std::string & s,GIAC_CONTEXT0);
  gen genmaxordererr(GIAC_CONTEXT0);
  gen genstabilityerr(GIAC_CONTEXT0);

  // short integer arithmetic
  int absint(int a);
  int giacmin(int a,int b);
  int giacmax(int a,int b);
  int invmod(int n,int modulo);
  unsigned invmod(unsigned a,int b);
  int invmod(longlong a,int b);
#ifdef INT128
  int invmod(int128_t a,int b);
  inline int smod(int128_t r,int m){
    int R=r%m;
    return smod(R,m);
  }
#endif
  int gcd(int a,int b);
  inline int smod_adjust(int r,int m){ // precondition -m<r<m
    r += (unsigned(r)>>31)*m; // make positive
    return r-(unsigned((m>>1)-r)>>31)*m;
  }
  int smod(int a,int b); // where b is assumed to be positive
  int smod(longlong a,int b); 
  int simplify(int & a,int & b);

  struct ref_mpz_t {
    volatile ref_count_t ref_count;
    mpz_t z;
    ref_mpz_t():ref_count(1) {mpz_init(z);}
    ref_mpz_t(size_t nbits):ref_count(1) {mpz_init2(z,int(nbits));}
    ref_mpz_t(const mpz_t & Z): ref_count(1) { mpz_init_set(z,Z); }
    ~ref_mpz_t() { mpz_clear(z); }
  };
  class identificateur;
  struct ref_identificateur; // in identificateur.h
  struct symbolic;
  struct ref_symbolic; // in symbolic.h
  class unary_function_eval;
  struct unary_function_ptr;
  typedef const unary_function_ptr *  const_unary_function_ptr_ptr;
  typedef const unary_function_eval *  const_unary_function_eval_ptr;
  struct ref_unary_function_ptr; // in unary.h 
  struct eqwdata;
  struct ref_eqwdata ; // defined below after gen
  struct ref_complex;
  struct ref_algext;
  struct ref_modulo;
  // Graphic object
  struct grob {
    void (* grob_draw)(void);
    int (* grob_handle) (int);
    void * grob_data;
  };
  struct ref_grob {
    volatile ref_count_t ref_count;
    grob g;
    ref_grob(const grob & G):ref_count(1),g(G) {}
  };
  class gen_user;
  struct ref_gen_user ; // user defined type
  struct ref_string {
    volatile ref_count_t ref_count;
    std::string s;
    ref_string(const std::string & S):ref_count(1),s(S) {}
  };
  template <class T> class tensor;

  typedef tensor<gen> polynome;
  typedef std::vector< facteur< polynome > > factorization;

  template<class T> class Tref_tensor; // in poly.h
  typedef Tref_tensor<gen> ref_polynome;
  typedef Tfraction<gen> fraction;
  template<class T> class Tref_fraction; 
  typedef Tref_fraction<gen> ref_fraction;

  struct ref_vecteur;
  void delete_ref_vecteur(ref_vecteur * ptr);
  ref_vecteur * new_ref_vecteur(const vecteur & v);
  ref_symbolic * new_ref_symbolic(const symbolic & s);

  template<class T> class Tref_fraction; // in fraction.h
  struct ref_void_pointer {
    volatile ref_count_t ref_count;
    void * p;
    ref_void_pointer(void * P):ref_count(1),p(P) {}
  };


  struct monome;
  // sparse polynomials: uncomment one of the 2 next lines
#ifdef DEBUG_SUPPORT
  typedef dbgprint_vector<monome> sparse_poly1; // debugging support
#else
  typedef std::vector<monome> sparse_poly1; // no debug. support
#endif
  struct ref_sparse_poly1;

  // arbitrary precision floats hierarchy (value or interval)
  std::string printmpf_t(const mpf_t & inf);
  class real_object {
  public:
#ifdef HAVE_LIBMPFR
    mpfr_t inf;
#else
    mpf_t inf;
#endif
    real_object(double d); 
#ifdef HAVE_LIBMPFR
    real_object(const mpfr_t & d); 
    real_object(const mpf_t & d); 
#else
    real_object(const mpf_t & d); 
#endif
    real_object(const gen & g);
    real_object(const gen & g,unsigned int precision);
    real_object() ;
    virtual std::string print(GIAC_CONTEXT) const;
    const char * dbgprint() const { 
      static std::string s; 
      s=this->print(0);
#if 0 // ndef NSPIRE
      CERR << s << std::endl;
#endif
      return s.c_str(); 
    }
    virtual ~real_object() { 
#ifdef HAVE_LIBMPFR
      mpfr_clear(inf);
#else
      mpf_clear(inf); 
#endif
    }
    virtual real_object & operator = (const real_object & g);
    real_object (const real_object & g) ;
    virtual gen addition (const gen & g,GIAC_CONTEXT) const;
    gen operator + (const gen & g) const;
    virtual gen operator + (const real_object & g) const;
    virtual gen multiply (const gen & g,GIAC_CONTEXT) const;
    gen operator * (const gen & g) const;
    virtual gen operator * (const real_object & g) const;
    virtual gen divide (const gen & g,GIAC_CONTEXT) const;
    gen operator / (const gen & g) const;
    virtual gen substract (const gen & g,GIAC_CONTEXT) const;
    virtual gen operator / (const real_object & g) const;
    gen operator - (const gen & g) const;
    virtual gen operator - (const real_object & g) const;
    virtual gen operator -() const;
    virtual gen inv() const;
    virtual gen sqrt() const;
    virtual gen abs() const;
    virtual gen exp() const;
    virtual gen log() const;
    virtual gen sin() const;
    virtual gen cos() const;
    virtual gen tan() const;
    virtual gen sinh() const;
    virtual gen cosh() const;
    virtual gen tanh() const;
    virtual gen asin() const;
    virtual gen acos() const;
    virtual gen atan() const;
    virtual gen asinh() const;
    virtual gen acosh() const;
    virtual gen atanh() const;
    virtual bool is_zero() const;
    virtual bool maybe_zero() const;
    virtual bool is_inf() const;
    virtual bool is_nan() const;
    virtual int is_positive() const;
    virtual double evalf_double() const;
  };
  struct ref_real_object {
    volatile ref_count_t ref_count;
    real_object r;
    ref_real_object():ref_count(1) {}
    ref_real_object(const real_object & R):ref_count(1),r(R) {}
  };
  gen real2int(const gen & g,GIAC_CONTEXT);
  gen real2double(const gen & g);
  class real_interval : public real_object {
  public:
#ifdef HAVE_LIBMPFI
    mpfi_t infsup;
#else
#ifdef HAVE_LIBMPFR
    mpfr_t sup;
#else
    mpf_t sup;
#endif
#endif
    real_interval(){
#ifdef HAVE_LIBMPFI
      mpfi_init_set_fr(infsup,inf);
#else
#ifdef HAVE_LIBMPFR
      mpfr_init_set(sup,inf,GMP_RNDN); 
#else
      mpf_init_set(sup,inf); 
#endif
#endif
    }
#ifdef HAVE_LIBMPFI
    real_interval(const mpfi_t & interv); 
#endif
    real_interval(const real_object & r):real_object(r) { 
#ifdef HAVE_LIBMPFI
      mpfi_init2(infsup,mpfr_get_prec(r.inf));
      mpfi_set_fr(infsup,r.inf);
#else
#ifdef HAVE_LIBMPFR
      mpfr_init_set(sup,r.inf,GMP_RNDN); 
#else
      mpf_init_set(sup,r.inf); 
#endif
#endif
    }
    real_interval(const real_interval & r):real_object(r) { 
#ifdef HAVE_LIBMPFI
      mpfi_init2(infsup,mpfi_get_prec(r.infsup));
      mpfi_set(infsup,r.infsup);
#else
#ifdef HAVE_LIBMPFR
      mpfr_init_set(sup,r.sup,GMP_RNDN); 
#else
      mpf_init_set(sup,r.sup); 
#endif
#endif
    }
    virtual ~real_interval() { 
#ifdef HAVE_LIBMPFI
      mpfi_clear(infsup); 
#else
#ifdef HAVE_LIBMPFR
      mpfr_clear(sup); 
#else
      mpf_clear(sup); 
#endif
#endif
    }
    virtual real_object & operator = (const real_interval & g) ;
    virtual real_object & operator = (const real_object & g) ;
    virtual gen addition (const gen & g,GIAC_CONTEXT) const;
    virtual gen operator + (const real_object & g) const;
    virtual real_interval operator + (const real_interval & g) const;
    virtual gen multiply (const gen & g,GIAC_CONTEXT) const;
    virtual gen operator * (const real_object & g) const;
    virtual real_interval operator * (const real_interval & g) const;
    virtual gen divide (const gen & g,GIAC_CONTEXT) const;
    virtual gen substract (const gen & g,GIAC_CONTEXT) const;
    virtual gen operator - (const real_object & g) const;
    virtual real_interval operator - (const real_interval & g) const ;
    virtual gen operator -() const;
    virtual bool is_zero () const ;
    virtual bool maybe_zero () const ;
    virtual int is_positive() const ;
    virtual bool is_inf() const;
    virtual bool is_nan() const;
    virtual gen inv() const;
    virtual gen sqrt() const;
    virtual gen abs() const;
    virtual gen exp() const;
    virtual gen log() const;
    virtual gen sin() const;
    virtual gen cos() const;
    virtual gen tan() const;
    virtual gen sinh() const;
    virtual gen cosh() const;
    virtual gen tanh() const;
    virtual gen asin() const;
    virtual gen acos() const;
    virtual gen atan() const;
    virtual gen asinh() const;
    virtual gen acosh() const;
    virtual gen atanh() const;
  };
  struct ref_real_interval {
    volatile ref_count_t ref_count;
    real_interval r; // assumes that storage of real_object inside real_interval is first
    ref_real_interval():ref_count(1) {}
    ref_real_interval(const real_interval & R):ref_count(1),r(R) {}
  };
  std::string print_binary(const real_object & r);
  gen read_binary(const std::string & s,unsigned int precision);
  // Convert g to a real or complex object of precision nbits
  gen accurate_evalf(const gen & g,int nbits);
  vecteur accurate_evalf(const vecteur & v,int nbits);
  std::string print_DOUBLE_(double d,GIAC_CONTEXT);

#if 1 // def NSPIRE
  class comparegen {
  public:
    bool operator () (const gen & a,const gen & b) const;
  };
  typedef std::map<gen,gen,comparegen> gen_map;
#else
  typedef std::map<gen,gen,const std::pointer_to_binary_function < const gen &, const gen &, bool> > gen_map;
#endif
  struct ref_gen_map;

  class my_mpz;

#ifdef NO_UNARY_FUNCTION_COMPOSE
  class unary_function_eval;
#else
  class unary_function_abstract;
#endif

  struct alias_unary_function_eval;
  struct unary_function_ptr {
#ifdef NO_UNARY_FUNCTION_COMPOSE
    // const unary_function_eval * _ptr;
    size_t _ptr;
    // int quoted; // will be used to avoid evaluation of args by eval
    // constructors
    // lexer_register is true to add dynamically the function name
    // to the list of functions names recognized by the lexer
    unary_function_ptr():_ptr(0) {} ;
    unary_function_ptr(const unary_function_eval * myptr):_ptr((size_t)myptr) {} ;
    // unary_function_ptr(const unary_function_eval * myptr,int parser_token);
    unary_function_ptr(const unary_function_eval * myptr,int myquoted,int parser_token);
    // unary_function_ptr(const alias_unary_function_eval * myptr,int parser_token);
    unary_function_ptr(const alias_unary_function_eval * myptr,int myquoted,int parser_token);
#else // NO_UNARY_FUNCTION_COMPOSE
    const unary_function_abstract * _ptr;
    // long * ref_count;
    // int quoted; // will be used to avoid evaluation of args by eval
    // constructors
    // lexer_register is true to add dynamically the function name
    // to the list of functions names recognized by the lexer
    // unary_function_ptr(const unary_function_abstract & myptr);
    unary_function_ptr():_ptr(0) {} ;
    unary_function_ptr(const unary_function_abstract * myptr):_ptr(myptr) {} ;
    // unary_function_ptr(const unary_function_abstract * myptr,int parser_token) ;
    // unary_function_ptr(const unary_function_abstract & myptr,int myquoted,int parser_token=0);
    unary_function_ptr(const unary_function_abstract * myptr,int myquoted,int parser_token);
    // unary_function_ptr(const unary_function_ptr & myptr);
    // unary_function_ptr(const alias_unary_function_eval * myptr,int parser_token);
    unary_function_ptr(const alias_unary_function_eval * myptr,int myquoted,int parser_token);
#endif // NO_UNARY_FUNCTION_COMPOSE
    // ~unary_function_ptr();
    // unary_function_ptr & operator = (const unary_function_ptr & acopier);
    gen operator () (const gen & arg,GIAC_CONTEXT) const;
#ifdef NO_UNARY_FUNCTION_COMPOSE
    inline unary_function_eval * ptr() const {
      return (unary_function_eval *) (((size_t) _ptr) & ~(uintptr_t)3);
#ifdef x86_64
      return (unary_function_eval *) (((ulonglong ) _ptr) & 0xfffffffffffffffc);
#else
      return (unary_function_eval *) (((size_t) _ptr) & 0xfffffffc);
#endif
    }
#else // NO_UNARY_FUNCTION_COMPOSE
    inline unary_function_abstract * ptr () const
    {
      return (unary_function_abstract *) (((ulonglong ) _ptr) & ~(uintptr_t)3);
#ifdef x86_64
      return (unary_function_abstract *) (((ulonglong ) _ptr) & 0xfffffffffffffffc);
#else
      return (unary_function_abstract *) (((size_t) _ptr) & 0xfffffffc);
#endif
    }
#endif // NO_UNARY_FUNCTION_COMPOSE
    bool quoted() const ;
    inline bool operator ==(const unary_function_ptr & u) const { 
      // if (&u==this) return true; 
      return ((ulonglong)(_ptr) & ~(uintptr_t)3 )  == ((ulonglong)( u._ptr) & ~(uintptr_t)3 );
#ifdef x86_64
      return ((ulonglong)(_ptr) & 0xfffffffffffffffc)  == ((ulonglong)( u._ptr) & 0xfffffffffffffffc ); 
#else
      return ((size_t)(_ptr) & 0xfffffffc) == ((size_t)(u._ptr) & 0xfffffffc); 
#endif
    }
    inline bool operator !=(const unary_function_ptr & u) const { return !(*this==u); }
    inline bool operator ==(const unary_function_ptr * u) const { 
      // if (&u==this) return true; 
      return u && ( ((ulonglong)(_ptr) &  ~(uintptr_t)3 ) == ((ulonglong)(u->_ptr) &  ~(uintptr_t)3) ); 
#ifdef x86_64
      return u && ( ((ulonglong)(_ptr) & 0xfffffffffffffffc) == ((ulonglong)(u->_ptr) & 0xfffffffffffffffc) ); 
#else
      return u && ( ((size_t)(_ptr) & 0xfffffffc) == ((size_t)(u->_ptr) & 0xfffffffc ) ); 
#endif
    }
    inline bool operator !=(const unary_function_ptr * u) const { return !(*this==u); }
    const char * dbgprint() const;
  };

  void delete_ptr(signed char subtype,short int type_save,ref_mpz_t * ptr_save);
  // FIXME: for little-endian check if type/unused/subtype order is correct!
  class gen {
  public:
#ifdef GIAC_TYPE_ON_8BITS
    unsigned char type;  // see dispatch.h
#else
    unsigned char type:5;  // 32 types is enough, keep 3 bits more for double
    unsigned char type_unused:3; 
#endif
    signed char subtype;
    unsigned short reserved; // used if SMARTPTR is defined on 64 bit CPU (16 bits for pointer val)
    union {
      // immediate types
      int val; // immediate int (type _INT_)
#ifdef DOUBLEVAL
      double _DOUBLE_val; // immediate float (type _DOUBLE_)
      giac_float _FLOAT_val;
#endif
#ifndef SMARTPTR64
      // pointer types
      ref_mpz_t * __ZINTptr; // long int (type _ZINT)
      ref_real_object * __REALptr; // extended double (type _REAL)
      ref_complex * __CPLXptr ; // complex as an gen[2] array (type _CPLX)
      ref_identificateur * __IDNTptr; // global name identifier (type _IDNT)
      ref_symbolic * __SYMBptr; // for symbolic objects (type _SYMB)
      ref_modulo * __MODptr;
      ref_algext * __EXTptr; // 2 gens for alg. extension (type ext)
      // alg ext: 1st gen is a std::vector or a fraction, 2nd gen is
      // a/ a std::vector, the minimal monic polynomial (the roots are permutable)
      // b/ a real_complex_rootof given by it's min poly and 
      // c/ another type meaning that the root is expressed in terms
      //    of another rootof, in this case ext_reduce should be called
      // For 2nd order extension, X^2=d is used if d!=1 mod 4
      // X is the positive solution
      // if d=1 mod 4 the equation is X^2-X=(d-1)/4
      Tref_fraction<gen> * __FRACptr; // fraction (type _FRAC)
      Tref_tensor<gen> * __POLYptr ; // multidim. sparse polynomials (type poly)
      // _VECTosite types (std::vector<>)
      ref_vecteur * __VECTptr ; // vecteur: std::vectors & dense_POLY1 (type _VECT)
      ref_sparse_poly1 * __SPOL1ptr ; // std::vector<monome>: sparse 1-d poly (type _SPOL1)
      ref_string * __STRNGptr;
      size_t _FUNC_;
      // ref_unary_function_ptr * __FUNCptr;
      ref_gen_user * __USERptr;
      ref_gen_map * __MAPptr;
      ref_eqwdata * __EQWptr;
      ref_grob * __GROBptr;
      ref_void_pointer * __POINTERptr;
#endif
    };
    inline volatile ref_count_t & ref_count() const { 
#ifdef SMARTPTR64
      return ((ref_mpz_t *) ((* (ulonglong *) (this))>>16))->ref_count;
#else
      return __ZINTptr->ref_count;
#endif
    }
    gen(): type(_INT_),subtype(0),val(0) {
#ifdef COMPILE_FOR_STABILITY
      control_c();
#endif
    };
#ifdef SMARTPTR64
    gen(void *ptr,short int subt)  {
#ifdef COMPILE_FOR_STABILITY
      control_c();
#endif
      ulonglong __POINTERptr = (ulonglong ) new ref_void_pointer(ptr); 
#ifndef NO_STDEXCEPT
      if (__POINTERptr & 0xffff000000000000)
	setsizeerr(gettext("Pointer out of range"));
#endif
      * ((ulonglong *) this) = __POINTERptr << 16;
      subtype=(signed char)subt;
      type=_POINTER_;
    };
#else
    gen(void *ptr,short int subt): type(_POINTER_),subtype(char(subt)) {
#ifdef COMPILE_FOR_STABILITY
      control_c();
#endif
      __POINTERptr=new ref_void_pointer(ptr); 
    };
#endif
    gen(int i): type(_INT_),subtype(0),val(i) {
#ifdef COMPILE_FOR_STABILITY
      control_c();
#endif
    };
    gen(size_t i): type(_INT_),subtype(0),val((int)i)  {
#ifdef COMPILE_FOR_STABILITY
      control_c();
#endif
    };
    gen(long i);
    gen(longlong i);
    gen(longlong i,int nbits);
#ifdef INT128
    gen(int128_t i);
#endif
    gen(const mpz_t & m);
    // WARNING coerce *mptr to an int if possible, in this case delete mptr
    // Pls do not use this constructor unless you know exactly what you do!!
    gen(ref_mpz_t * mptr);
#ifdef DOUBLEVAL
    gen(double d): type(_DOUBLE_),_DOUBLE_val(d) {};
#else
    // may not work on ia64 with -O2
    gen(double d);
#endif
    gen(const giac_float & f);
#ifdef BCD
    gen(accurate_bcd_float * b);
#endif
    // inline
    double DOUBLE_val() const ;
    giac_float FLOAT_val() const ;
    gen(int a,int b);
    gen(double a,double b);
    gen(const gen & a,const gen & b);
    gen(const std::complex<double> & c);
    gen(const gen & e);
    gen (const identificateur & s);
    gen (ref_identificateur * sptr);
    gen (const vecteur & v,short int s=0);
    gen (ref_vecteur * vptr,short int s=0); 
    // vptr must be a pointer allocated by new, do not delete it explicitly
    gen (const symbolic & s);
    gen (ref_symbolic * sptr);
    gen (const gen_user & g);
    gen (ref_gen_user * sptr);
    gen (const real_object & g);
    gen (const real_interval & g);
    // Pls do not use this constructor unless you know exactly what you do
    gen (Tref_tensor<gen> * pptr);
    gen (const polynome & p);
    gen (const fraction & p);
    gen (const std::string & s,GIAC_CONTEXT);
    gen (const wchar_t * s,GIAC_CONTEXT);
    gen (const char * s,GIAC_CONTEXT){ type=0; *this=gen(std::string(s),contextptr); };
    gen (const sparse_poly1 & p);
    gen (const unary_function_ptr & f,int nargs=1);
    gen (const unary_function_ptr * f,int nargs=1);
    gen (const gen_map & m);
    gen (const eqwdata & );
    gen (const grob & );
#ifdef HAVE_GMPXX_H
    gen (const mpz_class &);
#endif
    gen (const my_mpz &);
    void delete_gen();
    ~gen(){ 
      if ( type>_DOUBLE_ && type!=_FLOAT_
#if !defined SMARTPTR64 // || defined STATIC_BUILTIN_LEXER_FUNCTIONS
	   && type!=_FUNC 
#endif
	   ){
	// optimization for ref_count access must be checked in multi-thread
	ref_count_t * rc=(ref_count_t *) & ref_count();
	if (*rc!=-1 && !--*rc){
	  delete_gen();
	}
      }
    }

    bool in_eval(int level,gen & evaled,const context * contextptr) const;
    gen eval(int level,const context * contextptr) const;
    // inline gen eval() const { return eval(DEFAULT_EVAL_LEVEL,context0); }
    bool in_evalf(int level,gen & evaled,const context * contextptr) const;
    gen evalf(int level,const context * contextptr) const;
    // inline gen evalf() const { return evalf(DEFAULT_EVAL_LEVEL,context0); }
    gen evalf_double(int level,const context * contextptr) const ;
    gen evalf2double(int level,const context * contextptr) const;
#if defined SMARTPTR64 
    gen & operator = (const gen & a){
      ulonglong al=*((ulonglong *) &a);
      unsigned char atype=al&0x1f;
      ulonglong tl=*((ulonglong *) this);
      // Copy before deleting because the target might be embedded in a
      // with a ptr_val.ref_count of a equals to 1
      // short int type_save=type; // short int subtype_save=subtype; 
      * ((ulonglong *) this) = al;
      if (atype>_DOUBLE_ && atype!=_FLOAT_ 
	  && (al >> 16)	){
	ref_count_t * rc=(ref_count_t *)& ((ref_mpz_t *)(al>>16) )->ref_count;
	if (*rc!=-1)
	  ++(*rc); // increase ref count
      }
      // Now we delete the target 
      if ( (tl &0x1f)>_DOUBLE_)
	delete_ptr( (signed char) ((tl&0xff00)>>8),(tl &0x1f),(ref_mpz_t *) (tl >> 16));
      return *this;
    }
    
#else // SMARTPTR64
    gen & operator = (const gen & a){
      register unsigned t=(type << _DECALAGE) | a.type;
      if (!t){
	subtype=a.subtype;
	val=a.val;
	return *this;
      }
      if (a.type>_DOUBLE_ && a.type!=_FLOAT_ 
	  && a.type!=_FUNC && a.__ZINTptr
	  ){
	ref_count_t * rc=(ref_count_t *)&a.ref_count();
	if (*rc!=-1)
	  ++(*rc); // increase ref count
      }
      // Copy before deleting because the target might be embedded in a
      // with a ptr_val.ref_count of a equals to 1
      short int type_save=type; // short int subtype_save=subtype; 
      ref_mpz_t * ptr_save = __ZINTptr;
#ifdef DOUBLEVAL
      _DOUBLE_val = a._DOUBLE_val;
      subtype=a.subtype;
#else
      * ((ulonglong *) this) = *((ulonglong * ) &a);
#endif
      __ZINTptr=a.__ZINTptr;
      type=a.type;
      // Now we delete the target 
      if ( type_save>_DOUBLE_ && type_save!=_FLOAT_
	   && type_save!=_FUNC 
	   )
	delete_ptr(subtype,type_save,ptr_save);
      return *this;
    }
#endif // SMARTPTR64
    int to_int() const ;
    double to_double(const context * contextptr) const;
    bool is_vector_of_size(size_t n) const;
    bool is_identificateur_with_name(const char * s) const;
    bool is_real(GIAC_CONTEXT) const ;
    bool is_cinteger() const ;
    bool is_integer() const ;
    bool is_constant() const;
    std::string print(GIAC_CONTEXT) const;
    inline const char * printcharptr(GIAC_CONTEXT) const { return print(contextptr).c_str(); };
    // if sptr==0, return length required, otherwise print at end of *sptr
    int sprint(std::string * sptr,GIAC_CONTEXT) const; 
    std::string print_universal(GIAC_CONTEXT) const;
    std::string print() const;
    inline const char * printcharptr() const { return print().c_str(); };
    wchar_t * wprint(GIAC_CONTEXT) const ; 
    // print then convert to a malloc-ated wchar_t *
    void modify(int i) { *this =gen(i); };
    const char * dbgprint() const; 
    void uncoerce() ;
    gen conj(GIAC_CONTEXT) const;
    gen re(GIAC_CONTEXT) const ;
    gen im(GIAC_CONTEXT) const ;
    gen inverse(GIAC_CONTEXT) const;
    gen squarenorm(GIAC_CONTEXT) const;
    int bindigits() const ;
    gen operator [] (int i) const ;
    gen operator [] (const gen & i) const;
    gen operator_at(int i,GIAC_CONTEXT) const;
    gen operator_at(const gen & i,GIAC_CONTEXT) const;
    // gen & operator [] (int i) ;
    // gen & operator [] (const gen & i) ;
    gen operator () (const gen & i,GIAC_CONTEXT) const;
    gen operator () (const gen & i,const gen & progname,GIAC_CONTEXT) const;
    bool islesscomplexthan(const gen & other) const;
    bool is_approx() const ; // true if double/real or cmplx with re/im
    int symb_size() const;
    gen change_subtype(int newsubtype);
    bool is_symb_of_sommet(const unary_function_ptr & u) const ;
    bool is_symb_of_sommet(const unary_function_ptr * u) const ;
    gen makegen(int i) const; // make a gen of same type as this with integer i
    // For compatibility with older versions
    inline mpz_t * ref_ZINTptr() const ;
    inline real_object * ref_REALptr() const ;
    inline gen * ref_CPLXptr() const ;
    inline identificateur * ref_IDNTptr() const ;
    inline symbolic * ref_SYMBptr() const ;
    inline gen * ref_MODptr () const ;
    inline Tfraction<gen> * ref_FRACptr() const ;
    inline gen * ref_EXTptr () const ;
    inline polynome * ref_POLYptr() const ;
    inline vecteur * ref_VECTptr() const ;
    inline sparse_poly1 * ref_SPOL1ptr() const ;
    inline std::string * ref_STRNGptr() const ;
    inline unary_function_ptr * ref_FUNCptr() const ;
    inline gen_user * ref_USERptr() const ;
    inline gen_map * ref_MAPptr() const ;
    inline eqwdata * ref_EQWptr() const ;
    inline grob * ref_GROBptr() const ;
    inline void * ref_POINTER_val() const ;
  };

  bool ref_mpz_t2gen(ref_mpz_t * mptr,gen & g); // return true if mptr used in g
  gen change_subtype(const gen &g,int newsubtype);
  gen genfromstring(const std::string & s);
  // pointer to an int describing display mode for complex numbers
  int * complex_display_ptr(const gen & g); 
  // value==0 to cartesian, 1 to polar, 2 toggle, 3 count complex
  // returns the number of complex
  int adjust_complex_display(gen & res,int value); 

#if defined(SMARTPTR64)
  typedef ulonglong alias_gen;
#else
  struct alias_gen {
    unsigned char type;  // see dispatch.h
    signed char subtype;
    unsigned short reserved; // not used 
#ifdef DOUBLEVAL
    longlong value;
#else
    long value ; 
#endif
  };
#endif

  class vectpoly:public std::vector<polynome> {
  public:
    vectpoly():std::vector<polynome>::vector() {};
    vectpoly(size_t i,const polynome & p):std::vector<polynome>::vector(i,p) {};
    const char * dbgprint(){  
#ifndef NSPIRE
      CERR << *this << std::endl; 
#endif
      return "Done";
    }
  };

  struct ref_gen_map {
    volatile ref_count_t ref_count;
    gen_map m;
#if 1 // def NSPIRE
    ref_gen_map(): ref_count(1),m() {}
#else
    ref_gen_map(const std::pointer_to_binary_function < const gen &, const gen &, bool> & p): ref_count(1),m(p) {}
#endif
    ref_gen_map(const gen_map & M):ref_count(1),m(M) {}
  };

  struct alias_ref_fraction { ref_count_t ref_count; alias_gen num; alias_gen den; };
  struct alias_ref_complex {
    ref_count_t ref_count;
    int display;
    alias_gen re,im;
  };

  struct ref_vecteur {
    volatile ref_count_t ref_count;
    vecteur v;
    ref_vecteur():ref_count(1) {}
    ref_vecteur(unsigned s):ref_count(1),v(s) {}
    ref_vecteur(unsigned s,const gen & g):ref_count(1),v(s,g) {}
    ref_vecteur(const_iterateur it,const_iterateur itend):ref_count(1),v(it,itend) {}
    ref_vecteur(const vecteur & w):ref_count(1),v(w) {}
  };


#ifdef SMARTPTR64
#define define_alias_gen(name,type,subtype,ptr) alias_gen name={(ulonglong(ptr) << 16) | (subtype << 8) | type };
#define define_alias_ref_symbolic(name,sommet,type,subtype,ptr) alias_ref_symbolic name={-1,(unary_function_eval *)sommet,(ulonglong(ptr) << 16) | (subtype << 8) | type};
#define define_alias_ref_fraction(name,numtype,numsubtype,numptr,dentype,densubtype,denptr) alias_ref_fraction name={-1,{(ulonglong(numptr) << 16) | (numsubtype << 8) | numtype },{(ulonglong(denptr) << 16) | (densubtype << 8) | dentype }};
#define define_alias_ref_complex(name,retype,resubtype,reptr,imtype,imsubtype,imptr) alias_ref_complex name={-1,0,{(ulonglong(reptr) << 16) | (resubtype << 8) | retype },{(ulonglong(imptr) << 16) | (imsubtype << 8) | imtype }};
#define define_tab2_alias_gen(name,retype,resubtype,reptr,imtype,imsubtype,imptr) alias_gen name[]={{(ulonglong(reptr) << 16) | (resubtype << 8) | retype },{(ulonglong(imptr) << 16) | (imsubtype << 8) | imtype }};
#else // SMARTPTR64
#ifdef DOUBLEVAL
#define define_alias_gen(name,type,subtype,ptr) alias_gen name={type,subtype,0,ulonglong(ptr)};
#define define_alias_ref_symbolic(name,sommet,type,subtype,ptr) alias_ref_symbolic name={-1,(unary_function_eval *)sommet,type,subtype,0,ulonglong(ptr)};
#define define_alias_ref_fraction(name,numtype,numsubtype,numptr,dentype,densubtype,denptr) alias_ref_fraction name={-1,{numtype,numsubtype,0,ulonglong(numptr)},{dentype,densubtype,0,ulonglong(denptr)}};
#define define_alias_ref_complex(name,retype,resubtype,reptr,imtype,imsubtype,imptr) alias_ref_complex name={-1,0,{retype,resubtype,0,ulonglong(reptr)},{imtype,imsubtype,0,ulonglong(imptr)}};
#define define_tab2_alias_gen(name,retype,resubtype,reptr,imtype,imsubtype,imptr) alias_gen name[]={{retype,resubtype,0,ulonglong(reptr)},{imtype,imsubtype,0,ulonglong(imptr)}};
#else // DOUBLEVAL
#define define_alias_gen(name,type,subtype,ptr) alias_gen name={type,subtype,0,long(ptr)};
#define define_alias_ref_symbolic(name,sommet,type,subtype,ptr) alias_ref_symbolic name={-1,(unary_function_eval *)sommet,type,subtype,0,long(ptr)};
#define define_alias_ref_fraction(name,numtype,numsubtype,numptr,dentype,densubtype,denptr) alias_ref_fraction name={-1,{numtype,numsubtype,0,long(numptr)},{dentype,densubtype,0,long(denptr)}};
#define define_alias_ref_complex(name,retype,resubtype,reptr,imtype,imsubtype,imptr) alias_ref_complex name={-1,0,{retype,resubtype,0,long(reptr)},{imtype,imsubtype,0,long(imptr)}};
#define define_tab2_alias_gen(name,retype,resubtype,reptr,imtype,imsubtype,imptr) alias_gen name[]={{retype,resubtype,0,long(reptr)},{imtype,imsubtype,0,long(imptr)}};
#endif // DOUBLEVAL
#endif // SMARTPTR64

  // ? #ifdef __GNUC__
#ifdef IMMEDIATE_VECTOR
  struct alias_ref_vecteur { ref_count_t ref_count; const int _taille; const alias_gen * begin_immediate_vect; const alias_gen * end_immediate_vect; void * ptr; };
#define define_alias_ref_vecteur(name,b) alias_ref_vecteur name={-1,sizeof(b)/sizeof(gen),(const alias_gen *)b,(const alias_gen *)b+sizeof(b)/sizeof(gen),0};
#define define_alias_ref_vecteur2(name,b) alias_ref_vecteur name={-1,2,&b[0],&b[2],0};
#else
  struct alias_ref_vecteur { ref_count_t ref_count; const alias_gen * begin; const alias_gen * end; const alias_gen * finish; void * ptr; };
#define define_alias_ref_vecteur(name,b) alias_ref_vecteur name={-1,(const alias_gen *)b,(const alias_gen *)b+sizeof(b)/sizeof(gen),(const alias_gen *)b+sizeof(b)/sizeof(gen),0};
#define define_alias_ref_vecteur2(name,b) alias_ref_vecteur name={-1,&b[0],&b[2],&b[2],0};
#endif

  struct ref_complex {
    volatile ref_count_t ref_count;
    int display;
    gen re,im;
    ref_complex(const gen & R,const gen & I):ref_count(1),display(0),re(R),im(I) {}
    ref_complex(const gen & R,const gen & I,int display_mode):ref_count(1),display(display_mode),re(R),im(I) {}
  };
  struct ref_modulo {
    volatile ref_count_t ref_count;
    gen n,modulo;
    ref_modulo():ref_count(1) {}
    ref_modulo(const gen &N,const gen &M):ref_count(1),n(N),modulo(M) {}
  };
  struct ref_algext {
    volatile ref_count_t ref_count;
    gen P,Pmin,additional;
    ref_algext():ref_count(1) {}
  };

  bool poly_is_real(const polynome & p);
  bool vect_is_real(const vecteur & v,GIAC_CONTEXT);
  polynome addpoly(const polynome & p,const gen & c);
  polynome subpoly(const polynome & p,const gen & c);
  bool islesscomplexthanf(const gen & a,const gen & b);
  void islesscomplexthanf_sort(iterateur it,iterateur itend);
  void gen_sort_f(iterateur it,iterateur itend,bool (*f)(const gen &a,const gen &b));
  void gen_sort_f_context(iterateur it,iterateur itend,bool (*f)(const gen &a,const gen &b,GIAC_CONTEXT),GIAC_CONTEXT);
  gen makemap(); // make a new map
  gen chartab2gen(char * & s,GIAC_CONTEXT);


  bool is_zero(const gen & a,GIAC_CONTEXT0);
  bool is_exactly_zero(const gen & a);
  bool is_one(const gen & a);
  bool is_minus_one(const gen & a);
  bool is_sq_minus_one(const gen & a);
  bool is_inf(const gen & e);
  bool is_undef(const gen & e);
  bool is_undef(const polynome & p);
  bool is_undef(const vecteur & v);
  bool has_inf_or_undef(const gen & g);
  bool is_undef(const sparse_poly1 & s);
  bool is_zero__VECT(const vecteur & a,GIAC_CONTEXT);
  bool has_denominator(const gen & n);
  bool has_i(const gen & g);

  // basic arithmetic
  gen operator && (const gen & a,const gen & b);
  gen operator || (const gen & a,const gen & b);
  gen operator_plus (const gen & a,const gen & b,GIAC_CONTEXT);
  gen operator + (const gen & a,const gen & b);
  gen & operator_plus_eq (gen & a,const gen & b,GIAC_CONTEXT);
  inline gen & operator += (gen & a,const gen & b){ 
    return operator_plus_eq(a,b,giac::context0);
  }
  Tfraction<gen> operator + (const Tfraction<gen> & a,const Tfraction<gen> & b); // specialization
  gen sym_add (const gen & a,const gen & b,GIAC_CONTEXT);
  gen & operator_minus_eq (gen & a,const gen & b,GIAC_CONTEXT);
  inline gen & operator -= (gen & a,const gen & b){ 
    return operator_minus_eq(a,b,giac::context0);
  }
  gen operator_minus (const gen & a,const gen & b,GIAC_CONTEXT);
  gen operator - (const gen & a,const gen & b);
  gen operator - (const gen & a);
  gen sym_sub (const gen & a,const gen & b,GIAC_CONTEXT);
  gen operator_times (const gen & a,const gen & b,GIAC_CONTEXT);
  gen operator * (const gen & a,const gen & b);
  inline gen operator * (int a,const gen & b){ return gen(a)*b; }
  inline gen operator * (double a,const gen & b){ return gen(a)*b; }
  gen sym_mult (const gen & a,const gen & b,GIAC_CONTEXT);
  gen pow(const gen & base,const gen & exponent,GIAC_CONTEXT);
  gen giac_pow(const gen & base,const gen & exponent,GIAC_CONTEXT);
  gen iquo(const gen & a,const gen & b); // same
  gen irem(const gen & a,const gen & b,gen & q); // same
  gen smod(const gen & a,const gen & b); // same
  void smod(const vecteur & v,const gen & g,vecteur & w); 
  vecteur smod(const vecteur & a,const gen & b); // same
  gen rdiv(const gen & a,const gen & b,GIAC_CONTEXT0); // rational division
  inline gen operator /(const gen & a,const gen & b){ return rdiv(a,b); };
  gen operator %(const gen & a,const gen & b); // for int only
  // gen inv(const gen & a);
  gen inv(const gen & a,GIAC_CONTEXT);
  inline wchar_t * wprint(const gen & g,GIAC_CONTEXT){ return g.wprint(contextptr); }

  inline void swapgen(gen & a,gen &b){
#ifdef SMARTPTR64
    std::swap<ulonglong>(* (ulonglong *)&a,* (ulonglong *)&b);
#else
    gen tmp=a; a=b; b=tmp;
#endif
  }
  gen algebraic_EXTension(const gen & a,const gen & v);
  gen ext_reduce(const gen & a, const gen & v);
  gen maptoarray(const gen_map & m,GIAC_CONTEXT);
  gen evalf_VECT(const vecteur & v,int subtype,int level,const context * contextptr);
  gen m_gamma(int nbits); // Euler gamma constant precision nbits
  gen m_gamma(GIAC_CONTEXT);
  gen m_pi(int nbits); // pi precision nbits
  gen m_pi(GIAC_CONTEXT);

  // a*b -> tmp, may modify tmp in place
  void type_operator_times(const gen & a,const gen &b,gen & tmp);
  // c += a*b, may modify c in place
  /*
  inline void type_operator_plus_times(const gen & a,const gen & b,gen & c){
    gen g;
    type_operator_times(a,b,g);
    c += g;
  }
  */
  void type_operator_plus_times(const gen & a,const gen & b,gen & c);
  void type_operator_minus_times(const gen & a,const gen & b,gen & c);

  inline void type_operator_plus_times_reduce(const gen & a,const gen & b,gen & c,int reduce){
    type_operator_plus_times(a,b,c);
    if (reduce)
      c=smod(c,reduce);
  }

  inline void type_operator_reduce(const gen & a,const gen & b,gen & c,int reduce){
    type_operator_times(a,b,c);
    if (reduce)
      c=smod(c,reduce);
  }

  bool operator ==(const gen & a,const gen & b);
  bool operator ==(const gen & a,const identificateur & b);
  bool operator_equal(const gen & a,const gen & b,GIAC_CONTEXT);
  bool operator !=(const gen & a,const gen & b);
  inline bool operator !=(const gen & a,const identificateur & b){ return !(a==b); }
  gen equal(const gen & a,const gen &b,GIAC_CONTEXT);
  gen equal2(const gen & a,const gen &b,GIAC_CONTEXT);

  gen operator !(const gen & a);

  int fastsign(const gen & a,GIAC_CONTEXT);   // 0 if unknown, 1 if >0, -1 if <0
  gen sign(const gen & a,GIAC_CONTEXT);

  // Large tests if strictly not precised, if sign is unknown return false 
  bool is_greater(const gen & a,const gen &b,GIAC_CONTEXT);
  bool is_strictly_greater(const gen & a,const gen &b,GIAC_CONTEXT);
  inline bool operator > (const gen & a,const gen & b){
    return is_strictly_greater(a,b,giac::context0);
  }
  bool is_positive(const gen & a,GIAC_CONTEXT);
  bool is_strictly_positive(const gen & a,GIAC_CONTEXT);
  // Large tests if strictly not precised, if sign is unknown make an error
  bool ck_is_greater(const gen & a,const gen &b,GIAC_CONTEXT);
  bool ck_is_strictly_greater(const gen & a,const gen &b,GIAC_CONTEXT);
  bool ck_is_positive(const gen & a,GIAC_CONTEXT);
  bool ck_is_strictly_positive(const gen & a,GIAC_CONTEXT);
  gen superieur_strict(const gen & a,const gen & b,GIAC_CONTEXT);
  gen superieur_egal(const gen & a,const gen & b,GIAC_CONTEXT);
  gen inferieur_strict(const gen & a,const gen & b,GIAC_CONTEXT);
  gen inferieur_egal(const gen & a,const gen & b,GIAC_CONTEXT);
  bool symb_size_less(const gen & a,const gen & b);

  gen min(const gen & a, const gen & b,GIAC_CONTEXT);
  gen max(const gen & a, const gen & b,GIAC_CONTEXT=context0);
  // default context0 is required for instantiation in poly.h
  gen factorial(unsigned long int i);
  gen comb(unsigned long int i,unsigned long j);
  gen perm(unsigned long int i,unsigned long j);
  gen pow(const gen & base, unsigned long int exponent);
  gen pow(const gen & base, int exponent);
  gen pow(unsigned long int base, unsigned long int exponent);

  // more advanced arithmetic
  gen gcd(const gen & A,const gen & B,GIAC_CONTEXT);
  gen gcd(const gen & A,const gen & B);
  gen lcm(const gen & a,const gen & b);
  gen simplify(gen & n, gen & d);
  void egcd(const gen &a,const gen &b, gen & u,gen &v,gen &d );
  gen ichinrem(const gen & a,const gen &b,const gen & amod, const gen & bmod);
  gen invmod(const gen & A,const gen & modulo);
  gen fracmod(const gen & a_orig,const gen & modulo); // -> p/q=a mod modulo
  bool fracmod(const gen & a_orig,const gen & modulo,gen & res);
  bool in_fracmod(const gen &m,const gen & a,mpz_t & d,mpz_t & d1,mpz_t & absd1,mpz_t &u,mpz_t & u1,mpz_t & ur,mpz_t & q,mpz_t & r,mpz_t &sqrtm,mpz_t & tmp,gen & num,gen & den);
  gen powmod(const gen &base,const gen & expo,const gen & modulo);
  gen isqrt(const gen & A);
  gen re(const gen & a,GIAC_CONTEXT);
  gen no_context_re(const gen & a);
  gen im(const gen & a,GIAC_CONTEXT);
  gen no_context_im(const gen & a);
  void reim(const gen & g,gen & r,gen & i,GIAC_CONTEXT);
  gen conj(const gen & a,GIAC_CONTEXT);
  gen no_context_conj(const gen & a);
  gen sq(const gen & a);
  gen abs(const gen & a,const context * contextptr=context0);
  // default context0 is required for instantiation in poly.h
  gen linfnorm(const gen & a,const context * contextptr=context0);
  // default context0 is required for instantiation in poly.h
  gen arg(const gen & a,GIAC_CONTEXT);
  gen arg_CPLX(const gen & a,GIAC_CONTEXT);
  int is_perfect_square(const gen & A);
  int is_probab_prime_p(const gen & A);
  gen nextprime(const gen & a); // more precisely next probably prime
  gen prevprime(const gen & a); // more precisely prev probably prime
  int jacobi(const gen & A, const gen &B);
  int legendre(const gen & A, const gen & B);
  vecteur pascal_next_line(const vecteur & v); 
  vecteur pascal_nth_line(int n);
  // convert a __VECTOR__VECT vecteur to a normal vecteur
  gen vector2vecteur(const vecteur & v);

  // if b is a _MOD, returns a as a b _MOD 
  gen chkmod(const gen& a,const gen & b);
  // make a _MOD a%b
  gen makemod(const gen & a,const gen & b);
  // same without evaluating %
  gen makemodquoted(const gen & a,const gen & b);

  // from a sum in x returns a list of [coeff monomial]
  // e.g. 5+2x+3*x*y -> [ [5 1] [2 x] [ 3 x*y] ]
  vecteur symbolique2liste(const gen & x,GIAC_CONTEXT);
  // v should be sorted and shrinked
  gen liste2symbolique(const vecteur & v);

  bool is_atomic(const gen & e);
  gen _FRAC2_SYMB(const fraction & f);
  gen _FRAC2_SYMB(const gen & e);
  gen _FRAC2_SYMB(const gen & n,const gen & d);
  gen string2gen(const std::string & ss,bool remove_ss_quotes=true);
  // by default ss is assumed to be delimited by " and "
  std::complex<double> gen2complex_d(const gen & e);
  gen eval_VECT(const vecteur & v,int subtype,int level,const context * context_ptr );
  // functional equivalent of gen methods
  inline gen eval(const gen & e,int level,const context * contextptr){ return e.eval(level,contextptr); };
  inline gen eval(const gen & e,const context * contextptr){ return e.eval(eval_level(contextptr),contextptr); };
  gen no_context_evalf(const gen & e);
  gen evalf(const gen & e,int level,const context * contextptr );
  gen evalf2bcd_nock(const gen & g0,int level,const context * contextptr);
  gen evalf2bcd(const gen & g0,int level,const context * contextptr);
  inline gen evalf_double(const gen & e,int level,const context * contextptr){ return e.evalf_double(level,contextptr); };
  // return true if g can be converted to a double or real or complex
  bool has_evalf(const gen & g,gen & res,int level,const context * contextptr);
  inline std::string print(const gen & e,context * contextptr){ return e.print(contextptr); }
  inline bool is_real(const gen & g,GIAC_CONTEXT){ return g.is_real(contextptr); }
  inline  bool is_cinteger(const gen & g){ return g.is_cinteger();}  ;
  inline  bool is_integer(const gen & g){ return g.is_integer(); }  ;
  double int2double(int i);
  inline  bool is_constant(const gen & g){ return g.is_constant(); } ;
  inline bool is_approx(const gen & g){ return g.is_approx(); };
  gen aplatir_fois_plus(const gen & g);
  gen collect(const gen & g,GIAC_CONTEXT);

  class gen_user{
  public:
    virtual gen_user * memory_alloc() const { gen_user * ptr = new gen_user(*this); return ptr; }
    virtual ~gen_user() {}; 
    // redefine operations if it makes sense. 
    // You can redefine gen_user + gen_user for speed
    virtual gen operator + (const gen &) const { return gensizeerr(gettext("+ not redefined")); }
    virtual gen operator + (const gen_user & a) const { return (*this) + gen(a); }
    virtual gen operator - (const gen &) const { return gensizeerr(gettext("Binary - not redefined")); }
    virtual gen operator - (const gen_user & a) const { return (*this) - gen(a); }
    virtual gen operator - () const { return gensizeerr(gettext("Unary - not redefined")); }
    virtual gen operator * (const gen &) const { return gensizeerr(gettext("Binary * not redefined")); }
    virtual gen operator * (const gen_user & a) const { return (*this) * gen(a); }
    virtual gen operator / (const gen_user & a) const { return (*this) * a.inv(); }
    virtual gen operator / (const gen & a) const { return gensizeerr(gettext("Binary / not redefined")); }
    virtual bool is_zero() const { 
#ifndef NO_STDEXCEPT
      setsizeerr(gettext("==0 not redefined")); 
#endif
      return false;
    }
    virtual bool is_one() const { 
#ifndef NO_STDEXCEPT
      setsizeerr(gettext("==1 not redefined")); 
#endif
      return false;
    }
    virtual bool is_minus_one() const { 
#ifndef NO_STDEXCEPT
      setsizeerr(gettext("==-1 not redefined")); 
#endif
      return false;
    }
    virtual gen inv() const { return gensizeerr(gettext("Inv not redefined")); }
    virtual gen conj(GIAC_CONTEXT) const { return gensizeerr(gettext("Conj not redefined"));}
    virtual gen re(GIAC_CONTEXT) const { return gensizeerr(gettext("Real part not redefined"));}
    virtual gen im(GIAC_CONTEXT) const { return gensizeerr(gettext("Imaginary part not redefined")); }
    virtual gen abs(GIAC_CONTEXT) const { return gensizeerr(gettext("Abs not redefined"));}
    virtual gen arg(GIAC_CONTEXT) const { return gensizeerr(gettext("Arg not redefined")); }
    virtual gen sqrt(GIAC_CONTEXT) const { return gensizeerr(gettext("Sqrt not redefined")); }
    virtual gen operator () (const gen &,GIAC_CONTEXT) const { return gensizeerr(gettext("() not redefined")); }
    virtual gen operator [] (const gen &) { return gensizeerr(gettext("[] not redefined")); }
    virtual bool operator == (const gen &) const { 
#ifndef NO_STDEXCEPT
      setsizeerr(gettext("== not redefined")); 
#endif
      return false;
    }
    virtual bool operator == (const gen_user & a) const { return (*this) == gen(a); }
    // must redefine > AND <= since we do not have symetrical type arguments
    virtual gen operator > (const gen &) const { return gensizeerr(gettext("> not redefined")); }
    virtual gen operator > (const gen_user & a) const { return superieur_strict(*this, gen(a),0); }
    virtual gen operator <= (const gen &) const { return gensizeerr(gettext("<= not redefined")); }
    virtual gen operator <= (const gen_user & a) const { return inferieur_egal(*this, gen(a),0); }
    virtual gen polygcd (const polynome &,const polynome &,polynome &) const { return gensizeerr(gettext("Polynomial gcd not redefined")); }    
    virtual gen polyfactor (const polynome & p,
			     factorization & f) const { 
      return gensizeerr(gettext("Polynomial gcd not redefined")); 
    }    
    virtual gen gcd (const gen &) const { return gensizeerr(gettext("gcd not redefined")); }    
    virtual gen gcd (const gen_user & a) const { return gcd(gen(a)); }
    virtual std::string print (GIAC_CONTEXT) const { return  "Nothing_to_print";}
    const char * dbgprint () const { 
      static std::string s;
      s=this->print(0);
#ifndef NSPIRE
      CERR << s << std::endl;
#endif
      return s.c_str();
    }
    virtual std::string texprint (GIAC_CONTEXT) const { return "Nothing_to_print_tex"; }
    virtual gen eval(int level,const context * contextptr) const {return *this;};
    virtual gen evalf(int level,const context * contextptr) const {return *this;};
    virtual gen makegen(int i) const { return string2gen("makegen not redefined"); } ;
    virtual gen rand(GIAC_CONTEXT) const { return string2gen("rand not redefined"); };
  };
  struct ref_gen_user {
    volatile ref_count_t ref_count;
    gen_user * u;
    ref_gen_user(const gen_user & U):ref_count(1),u(U.memory_alloc()) {}
    ref_gen_user(gen_user * U):ref_count(1),u(U) {}
    ~ref_gen_user() {delete u;}
  };

  std::string print_the_type(int val,GIAC_CONTEXT);

  // I/O
#ifdef NSPIRE
  template<class T> nio::ios_base<T> & operator<<(nio::ios_base<T> & os,const gen & a){
    return os << a.print(context0); 
  }
  template<class T> nio::ios_base<T> & operator>>(nio::ios_base<T> & is,gen & a);
#else
  std::ostream & operator << (std::ostream & os,const gen & a);
  std::istream & operator >> (std::istream & is,gen & a);
#endif

#if defined(GIAC_GENERIC_CONSTANTS) // || (defined(VISUALC) && !defined(RTOS_THREADX)) || defined(x86_64)
  extern const gen zero;
#else
  extern const gen & zero;
#endif

  struct monome {
    gen coeff;
    gen exponent;
    monome():coeff(0),exponent(0) {};
    monome(const gen & mycoeff) : coeff(mycoeff),exponent(zero) {};
    monome(const gen &mycoeff,const gen &myexponent) : coeff(mycoeff),exponent(myexponent) {};
    // std::string print() const ;
    std::string print(GIAC_CONTEXT) const ;
    const char * dbgprint() const ;
  };
#ifdef NSPIRE
  template<class T> nio::ios_base<T> & operator<<(nio::ios_base<T> & os,const monome & m){    return os << m.print() ;}
#else
  std::ostream & operator << (std::ostream & os,const monome & m);
#endif
  inline bool operator == (const monome & a,const monome & b){ return a.coeff==b.coeff && a.exponent==b.exponent; }
  inline bool operator != (const monome & a,const monome & b){ return a.coeff!=b.coeff || a.exponent!=b.exponent; }
  polynome apply( const polynome & p, const context * contextptr, gen (* f) (const gen &, const context *));
  
  const char * printi(GIAC_CONTEXT);
  std::string hexa_print_ZINT(const mpz_t & a);
  std::string octal_print_ZINT(const mpz_t & a);
  std::string binary_print_ZINT(const mpz_t & a);
  std::string print_ZINT(const mpz_t & a);
  std::string printinner_VECT(const vecteur & v, int subtype,GIAC_CONTEXT);
  std::string & add_printinner_VECT(std::string & s,const vecteur &v,int subtype,GIAC_CONTEXT);
  std::string begin_VECT_string(int subtype,bool tex,GIAC_CONTEXT);
  std::string end_VECT_string(int subtype,bool tex,GIAC_CONTEXT);
  std::string print_VECT(const vecteur & v,int subtype,GIAC_CONTEXT); // subtype was 0 by default
  std::string print_SPOL1(const sparse_poly1 & p,GIAC_CONTEXT);
  std::string print_STRNG(const std::string & s);
  std::string printint32(int val,int subtype,GIAC_CONTEXT);
  std::string print_FLOAT_(const giac_float & f,GIAC_CONTEXT);
  // find closing or opening () [] {}
  bool matchpos(const std::string & s,int & pos);
  std::string cut_string(const std::string & chaine,int nchar,std::vector<int> & ligne_end) ;
  std::string calc_endlines_positions(const vecteur & history_in,const vecteur & history_out,int nchar,std::vector<int> & endlines,std::vector<int> & positions);
  bool is_operator_char(char c);
  void increase_selection(const std::string & s,int & pos1,int& pos2);
  void decrease_selection(const std::string & s,int & pos1,int& pos2);
  void move_selection_right(const std::string & s,int & pos1, int & pos2);
  void move_selection_left(const std::string & s,int & pos1, int & pos2);
  std::string remove_extension(const std::string & chaine);


  // This type collects global variables to enable threading
  struct environment {
    gen modulo; // characteristic
    bool moduloon; // Set to false if non modular arithmetic required
    bool complexe; // true if working on Z/pZ[i]
    gen pn; // cardinal of the field, 0 means equal to modulo
    gen coeff; // exemple of coeff, so that we can call coeff.makegen
    environment(){
      modulo=13;
      moduloon=false;
      complexe=false;
      coeff=pn=0;
    }
  };

    struct ref_sparse_poly1 {
    volatile ref_count_t ref_count;
    sparse_poly1 s;
    ref_sparse_poly1(const sparse_poly1 & S):ref_count(1),s(S) {}
  };
  

  // extern environment * env; 

  struct attributs {
    int fontsize;
    int background;
    int text_color;
    attributs(int f,int b,int t): fontsize(f),background(b),text_color(t) {};
    attributs():fontsize(0),background(0),text_color(0) {};
  };

  // Terminal data for EQW display
  struct eqwdata {
    gen g; 
    attributs eqw_attributs;
    int x,y,dx,dy;
    bool selected;
    bool active;
    bool hasbaseline;
    bool modifiable;
    int baseline;
    eqwdata(int dxx,int dyy,int xx, int yy,const attributs & a,const gen& gg):g(gg),eqw_attributs(a),x(xx),y(yy),dx(dxx),dy(dyy),selected(false),active(false),hasbaseline(false),modifiable(true),baseline(0) {};
    eqwdata(int dxx,int dyy,int xx, int yy,const attributs & a,const gen& gg,int mybaseline):g(gg),eqw_attributs(a),x(xx),y(yy),dx(dxx),dy(dyy),selected(false),active(false),hasbaseline(true),modifiable(true),baseline(mybaseline) {};
    const char * dbgprint(){ 
#ifndef NSPIRE
      CERR << g << ":" << dx<< ","<< dy<< "+"<<x <<","<< y<< "," << baseline << "," << eqw_attributs.fontsize << "," << eqw_attributs.background << "," << eqw_attributs.text_color << std::endl; 
#endif
      return "Done";
    }
  };
  struct ref_eqwdata {
    volatile ref_count_t ref_count;
    eqwdata e;
    ref_eqwdata(const eqwdata & E): ref_count(1),e(E) {}
  };


  class identificateur {
  public:
    int * ref_count;
    gen * value;
    // std::string * name;
    const char * id_name;
    vecteur * localvalue;
    // value / localvalue might be an assumption if it's a vecteur 
    // of subtype _ASSUME__VECT
    // The first gen of an assumption vecteur is the type (_FRAC for rational)
    // If the type is _REAL, the vecteur has 2 other elements
    // * an interval or a _SET_VECT of intervals 
    //   where interval=vecteur of length 2 of subtype _LINE__VECT
    // * a list of excluded particular values
    // If the type is _DOUBLE_ the variable will be evalf-ed but not eval-ed
    // This is useful in geometry to make figures and get exact results
    // If the type is _INT_ it 
    short int * quoted;
    identificateur();
    explicit identificateur(const std::string & s);
    explicit identificateur(const char * s);
#ifdef GIAC_HAS_STO_38
    explicit identificateur(const char * s, bool StringIsNowYours); // creates identifier. if StringIsNowYours, then the string will be freed when id is destroyed...
#endif
    explicit identificateur(const char * s,const gen & e);
    identificateur(const std::string & s,const gen & e);
    identificateur(const identificateur & s);
    ~identificateur();
    identificateur & operator =(const identificateur & s);
    gen eval(int level,const gen & orig,const context * context_ptr) ;
    bool in_eval(int level,const gen & orig,gen & evaled,const context * context_ptr, bool No38Lookup=false); // if No38Lookup, does not check if HP38 knows about this name...
    const char * print(const context * context_ptr) const ;
    std::string name() const { return id_name; }
    const char * dbgprint() const { 
      static std::string s;
      s=this->print(context0); 
#if 0 // ndef NSPIRE
      COUT << s;
#endif
      return s.c_str();
    }
    void unassign() ;
    void push(int protection,const gen & e);
    bool operator ==(const identificateur & i);
    bool operator ==(const gen & i);
    inline bool operator !=(const identificateur & i){ return !(*this==i); }
    inline bool operator !=(const gen & i){ return !(*this==i);}
    void MakeCopyOfNameIfNotLocal(); ///< if the name is not dynamicaly allocated, create a copy for that id.
  };
  struct ref_identificateur {
    volatile ref_count_t ref_count;
    identificateur i;
    ref_identificateur(const char * s):ref_count(1),i(s){}
    ref_identificateur(const std::string & s):ref_count(1),i(s){}
    ref_identificateur(const identificateur & s):ref_count(1),i(s){}
  };
  struct alias_ref_identificateur {
    ref_count_t i;
    int * ref_count;
    gen * value;
    const char * id_name;
    vecteur * localvalue;
    short int * quoted;
  };

  struct ref_unary_function_ptr {
    volatile ref_count_t ref_count;
    unary_function_ptr u;
    ref_unary_function_ptr(const unary_function_ptr & U):ref_count(1),u(U) {}
    ref_unary_function_ptr(const unary_function_ptr * U):ref_count(1),u(*U) {}
  };
  struct symbolic {
    unary_function_ptr sommet; 
    gen feuille;
    symbolic(const unary_function_ptr & o,const gen & e): sommet(o),feuille(e){};
    symbolic(const unary_function_ptr & o,const gen & e1,const gen &e2): sommet(o), feuille(makevecteur(e1,e2)) {};
    symbolic(const unary_function_ptr & o,const gen & e1,const gen &e2,const gen & e3): sommet(o), feuille(makevecteur(e1,e2,e3)) {};
    symbolic(const unary_function_ptr & o,const gen & e1,const gen &e2,const gen & e3,const gen & e4): sommet(o), feuille(makevecteur(e1,e2,e3,e4)) {};
    symbolic(const unary_function_ptr * o,const gen & e): sommet(*o),feuille(e){};
    symbolic(const unary_function_ptr * o,const gen & e1,const gen &e2): sommet(*o), feuille(makevecteur(e1,e2)) {};
    symbolic(const unary_function_ptr * o,const gen & e1,const gen &e2,const gen & e3): sommet(*o), feuille(makevecteur(e1,e2,e3)) {};
    symbolic(const unary_function_ptr * o,const gen & e1,const gen &e2,const gen & e3,const gen & e4): sommet(*o), feuille(makevecteur(e1,e2,e3,e4)) {};
    symbolic(const symbolic & mys) : sommet(mys.sommet),feuille(mys.feuille) {};
    symbolic(const symbolic & mys,const gen & e);
    symbolic(const gen & a,const unary_function_ptr & o,const gen & b);
    symbolic(const gen & a,const unary_function_ptr * o,const gen & b);
    std::string print(GIAC_CONTEXT) const;
    const char * dbgprint() const { 
      static std::string s;
      s=this->print(context0);
#if 0 // ndef NSPIRE
      COUT << s << std::endl; 
#endif
      return s.c_str();
    }
    gen eval(int level,const context * context_ptr) const;
    gen evalf(int level,const context * context_ptr) const;
    int size() const;
  };

  struct ref_symbolic {
    volatile ref_count_t ref_count;
    symbolic s;
    ref_symbolic(const symbolic & S):ref_count(1),s(S) {}
  };
#ifdef SMARTPTR64
  struct alias_ref_symbolic {
    ref_count_t ref_count;
    unary_function_eval * sommet;
    ulonglong feuille;
  };
#else
  struct alias_ref_symbolic {
    ref_count_t ref_count;
    unary_function_eval * sommet;
    unsigned char type;  // see dispatch.h
    signed char subtype;
    unsigned short reserved; // not used 
#ifdef DOUBLEVAL
    longlong value;
#else
    long value ; 
#endif
  };
#endif

#ifdef SMARTPTR64
  inline mpz_t * gen::ref_ZINTptr() const { return & ((ref_mpz_t *) (* (ulonglong *) this >> 16))->z ; }
  inline real_object * gen::ref_REALptr() const { return & ((ref_real_object *) (* (ulonglong *) this >> 16)) ->r; }
  inline gen * gen::ref_CPLXptr() const { return & ((ref_complex *)(* (ulonglong *) this >> 16))->re; }
  inline gen * gen::ref_MODptr () const { return & ((ref_modulo *)(* (ulonglong *) this >> 16))->n; }
  inline gen * gen::ref_EXTptr () const { return & ((ref_algext *)(* (ulonglong *) this >> 16))->P; }
  inline vecteur * gen::ref_VECTptr() const { return &((ref_vecteur*)(* (ulonglong *) this >> 16))->v; }
  inline sparse_poly1 * gen::ref_SPOL1ptr() const { return &((ref_sparse_poly1*)(* (ulonglong *) this >> 16))->s; }
  inline std::string * gen::ref_STRNGptr() const { return &((ref_string*)(* (ulonglong *) this >> 16))->s; }
  inline gen_user * gen::ref_USERptr() const { return ((ref_gen_user*)(* (ulonglong *) this >> 16))->u; }
  inline gen_map * gen::ref_MAPptr() const { return &((ref_gen_map*)(* (ulonglong *) this >> 16))->m; }
  inline eqwdata * gen::ref_EQWptr() const { return &((ref_eqwdata*)(* (ulonglong *) this >> 16))->e; }
  inline grob * gen::ref_GROBptr() const { return &((ref_grob*)(* (ulonglong *) this >> 16))->g; }
  inline void * gen::ref_POINTER_val() const { return ((ref_void_pointer*)(* (ulonglong *) this >> 16))->p; }
  inline Tfraction<gen> * gen::ref_FRACptr() const { return &((ref_fraction *)(* (ulonglong *) this >> 16))->f; }
  inline polynome * gen::ref_POLYptr() const { return &((ref_polynome*)(* (ulonglong *) this >> 16))->t; }
  inline identificateur * gen::ref_IDNTptr() const {return &((ref_identificateur*)(* (ulonglong *) this >> 16))->i; }
  inline symbolic * gen::ref_SYMBptr() const { return &((ref_symbolic*)(* (ulonglong *) this >> 16))->s; }
  inline unary_function_ptr * gen::ref_FUNCptr() const { return &((ref_unary_function_ptr*)(* (ulonglong *) this >> 16))->u; }
#else // SMARTPTR64
  inline mpz_t * gen::ref_ZINTptr() const { return &__ZINTptr->z; }
  inline real_object * gen::ref_REALptr() const { return &__REALptr->r; }
  inline gen * gen::ref_CPLXptr() const { return &__CPLXptr->re; }
  inline gen * gen::ref_MODptr () const { return &__MODptr->n; }
  inline gen * gen::ref_EXTptr () const { return &__EXTptr->P; }
  inline vecteur * gen::ref_VECTptr() const { return &__VECTptr->v; }
  inline sparse_poly1 * gen::ref_SPOL1ptr() const { return &__SPOL1ptr->s; }
  inline std::string * gen::ref_STRNGptr() const { return &__STRNGptr->s; }
  inline gen_user * gen::ref_USERptr() const { return __USERptr->u; }
  inline gen_map * gen::ref_MAPptr() const { return &__MAPptr->m; }
  inline eqwdata * gen::ref_EQWptr() const { return &__EQWptr->e; }
  inline grob * gen::ref_GROBptr() const { return &__GROBptr->g; }
  inline void * gen::ref_POINTER_val() const { return __POINTERptr->p; }
  inline Tfraction<gen> * gen::ref_FRACptr() const { return &__FRACptr->f; }
  inline polynome * gen::ref_POLYptr() const { return &__POLYptr->t; }
  inline identificateur * gen::ref_IDNTptr() const {return &__IDNTptr->i; }
  inline symbolic * gen::ref_SYMBptr() const { return &__SYMBptr->s; }
  // inline unary_function_ptr * gen::ref_FUNCptr() const { return &__FUNCptr->u; }
  inline unary_function_ptr * gen::ref_FUNCptr() const { return (unary_function_ptr*) &_FUNC_; }
#endif // SMARTPTR64

#ifndef DOUBLEVAL
#define _DOUBLE_val DOUBLE_val()
#define _FLOAT_val FLOAT_val()
#endif // DOUBLEVAL
#define  _ZINTptr ref_ZINTptr()
#define	 _REALptr ref_REALptr()
#define  _CPLXptr ref_CPLXptr()
#define  _IDNTptr ref_IDNTptr()
#define  _SYMBptr ref_SYMBptr()
#define  _MODptr ref_MODptr()
#define  _FRACptr ref_FRACptr()
#define  _EXTptr ref_EXTptr()
#define  _POLYptr ref_POLYptr ()
#define  _VECTptr  ref_VECTptr()
#define  _SPOL1ptr ref_SPOL1ptr()
#define  _STRNGptr ref_STRNGptr()
#define  _FUNCptr ref_FUNCptr()
#define  _ROOTptr ref_ROOTptr()
#define  _USERptr ref_USERptr()
#define  _MAPptr ref_MAPptr()
#define  _EQWptr ref_EQWptr()
#define  _GROBptr ref_GROBptr()
#define  _POINTER_val ref_POINTER_val()

  // function that are indexed
  extern const alias_type alias_at_plus;
  extern const alias_type alias_at_neg;
  extern const alias_type alias_at_binary_minus;
  extern const alias_type alias_at_prod;
  extern const alias_type alias_at_division;
  extern const alias_type alias_at_inv;
  extern const alias_type alias_at_pow;
  extern const alias_type alias_at_exp;
  extern const alias_type alias_at_ln;
  extern const alias_type alias_at_abs;
  extern const alias_type alias_at_arg;
  extern const alias_type alias_at_pnt;
  extern const alias_type alias_at_point;
  extern const alias_type alias_at_segment;
  extern const alias_type alias_at_sto;
  extern const alias_type alias_at_sin;
  extern const alias_type alias_at_cos;
  extern const alias_type alias_at_tan;
  extern const alias_type alias_at_asin;
  extern const alias_type alias_at_acos;
  extern const alias_type alias_at_atan;
  extern const alias_type alias_at_sinh;
  extern const alias_type alias_at_cosh;
  extern const alias_type alias_at_tanh;
  extern const alias_type alias_at_asinh;
  extern const alias_type alias_at_acosh;
  extern const alias_type alias_at_atanh;
  extern const alias_type alias_at_interval;
  extern const alias_type alias_at_union;
  extern const alias_type alias_at_minus;
  extern const alias_type alias_at_intersect;
  extern const alias_type alias_at_not;
  extern const alias_type alias_at_and;
  extern const alias_type alias_at_ou;
  extern const alias_type alias_at_inferieur_strict;
  extern const alias_type alias_at_inferieur_egal;
  extern const alias_type alias_at_superieur_strict;
  extern const alias_type alias_at_superieur_egal;
  extern const alias_type alias_at_different;
  extern const alias_type alias_at_equal;
  extern const alias_type alias_at_equal2;
  extern const alias_type alias_at_rpn_prog;
  extern const alias_type alias_at_local;
  extern const alias_type alias_at_return;
  extern const alias_type alias_at_Dialog;
  extern const alias_type alias_at_double_deux_points;
  extern const alias_type alias_at_pointprod;
  extern const alias_type alias_at_pointdivision;
  extern const alias_type alias_at_pointpow;
  extern const alias_type alias_at_hash;
  extern const alias_type alias_at_pourcent;
  extern const alias_type alias_at_tilocal;
  extern const alias_type alias_at_break;
  extern const alias_type alias_at_continue;
  extern const alias_type alias_at_ampersand_times;
  extern const alias_type alias_at_maple_lib;
  extern const alias_type alias_at_unit;
  extern const alias_type alias_at_plot_style;
  extern const alias_type alias_at_xor;
  extern const alias_type alias_at_check_type;
  extern const alias_type alias_at_quote_pow;
  extern const alias_type alias_at_case;
  extern const alias_type alias_at_dollar;
  extern const alias_type alias_at_IFTE;
  extern const alias_type alias_at_RPN_CASE;
  extern const alias_type alias_at_RPN_LOCAL;
  extern const alias_type alias_at_RPN_FOR;
  extern const alias_type alias_at_RPN_WHILE;
  extern const alias_type alias_at_NOP;
  extern const alias_type alias_at_unit;
  extern const alias_type alias_at_ifte;
  extern const alias_type alias_at_for;
  extern const alias_type alias_at_bloc;
  extern const alias_type alias_at_program;
  extern const alias_type alias_at_same;
  extern const alias_type alias_at_increment;
  extern const alias_type alias_at_decrement;
  extern const alias_type alias_at_multcrement;
  extern const alias_type alias_at_divcrement;
  extern const alias_type alias_at_sq;
  extern const alias_type alias_at_display;
  extern const alias_type alias_at_of;
  extern const alias_type alias_at_at;
  extern const alias_type alias_at_normalmod;  
  extern const alias_type alias_at_pointplus;
  extern const alias_type alias_at_pointminus;

#ifdef BCD
  inline bool ck_gentobcd(const gen & g,accurate_bcd_float * bcdptr){
    if (g.type!=_FLOAT_)
      return false;
    fExpand(g._FLOAT_val.f,bcdptr);
    return true;
  }
  inline accurate_bcd_float * gentobcd(const gen & g,accurate_bcd_float * bcdptr){
    return fExpand(g._FLOAT_val.f,bcdptr);
  }
#endif

  // should be in input_lexer.h
  // return true/false to tell if s is recognized. return the appropriate gen if true
  bool CasIsBuildInFunction(char const *s, gen &g);

  void sprintfdouble(char *,const char *,double d);

  extern "C" const char * caseval(const char *);

#ifndef NO_NAMESPACE_GIAC
} // namespace giac
#endif // ndef NO_NAMESPACE_GIAC

#endif // _GIAC_GEN_H