/usr/include/givaro/extension.h is in libgivaro-dev 4.0.2-8ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 | // Copyright(c)'1994-2009 by The Givaro group
// This file is part of Givaro.
// Givaro is governed by the CeCILL-B license under French law
// and abiding by the rules of distribution of free software.
// see the COPYRIGHT file for more details.
/*! @file extension.h
* @ingroup zpz
* @brief NO DOX
*/
#ifndef __GIVARO_extension_H
#define __GIVARO_extension_H
#include <gmp.h>
#include <givaro/gfq.h>
#include <givaro/givconfig.h>
#include <givaro/givpoly1.h>
#include <givaro/givpoly1factor.h>
#include <givaro/givpoly1padic.h>
#include "givaro/givtablelimits.h"
namespace Givaro {
// ----- Forward declaration
template <class ExtensionField, class Type>
class GIV_ExtensionrandIter;
//! XXX
template<class Rt>
Rt FF_EXPONENT_MAX(const Rt p, const Rt maxe = _GIVARO_FF_MAXEXPONENT_)
{
Rt f = 0;
for(Rt i = p; (i < (Rt)_GIVARO_FF_TABLE_MAX) && (f < maxe); ++f, i*=p) ;
return f;
}
//! XXX
template<class Rt>
Rt FF_SUBEXPONENT_MAX(const Rt p, const Rt e)
{
Rt f = FF_EXPONENT_MAX(p,e);
for( ; f > 1; --f)
if ((e % f) == 0) break;
return f;
}
#define NEED_POLYNOMIAL_REPRESENTATION(p,e) ((e) > FF_SUBEXPONENT_MAX((p),(e)))
#define EXTENSION(q,expo) ( NEED_POLYNOMIAL_REPRESENTATION((q),(expo)) ? Extension<>((q), (expo)) : GFqDom<int64_t>((q), (expo)) )
//! XXX
template<typename Field>
int64_t Exponent_Trait(const Field& F)
{
return 1;
}
//! XXX
template<>
inline int64_t Exponent_Trait(const GFqDom<int64_t>& F)
{
return F.exponent();
}
template<typename BaseField> class Extension;
//! XXX
template<typename BaseField>
int64_t Exponent_Trait(const Extension<BaseField>& F)
{
return F.exponent();
}
//! Extension
template<class BFT = GFqDom<int64_t> >
class Extension {
public:
typedef Extension<BFT> Self_t;
typedef BFT BaseField_t;
typedef typename BFT::Element BFElement;
typedef typename Signed_Trait<BFElement>::unsigned_type Residu_t;
typedef Poly1FactorDom< BFT, Dense > Pol_t;
typedef typename Pol_t::Element PolElement;
protected:
BaseField_t _bF;
Pol_t _pD;
PolElement _irred;
Residu_t _characteristic;
Residu_t _extension_order;
Residu_t _exponent;
Integer _cardinality;
public:
bool extension_type () const
{
return true;
}
typedef PolElement Element;
typedef Element* Element_ptr ;
typedef const Element* ConstElement_ptr;
Element zero;
Element one;
Element mOne;
Extension() {}
Extension ( const Residu_t p, const Residu_t e = 1, const Indeter Y="Y") :
_bF(p, FF_SUBEXPONENT_MAX(p,e) ), _pD( _bF, Y ), _characteristic( p )
, _extension_order( e/FF_SUBEXPONENT_MAX(p,e) ), _exponent ( e )
, _cardinality( pow(Integer(p),e) ), zero (_pD.zero)
, one (_pD.one), mOne(_pD.mOne)
{
/* cerr << "Pol Cstor" << endl; */
int64_t basedegree = FF_SUBEXPONENT_MAX(p,e) ;
if (basedegree >= (int64_t)e) {
std::cerr << "WARNING : Try a direct extension field GFDom instead of a polynomial extension" << std::endl;
_bF = BaseField_t(p, 1);
_pD = Pol_t(_bF, Y);
_extension_order = _exponent;
}
_pD.creux_random_irreducible( _irred, (int64_t)_extension_order );
}
Extension ( const BaseField_t& bF, const Residu_t ex = 1, const Indeter Y="Y") :
_bF( bF )
, _pD( _bF, Y )
, _characteristic( (Residu_t) bF.characteristic() )
, _extension_order( (Residu_t)( ex ) )
, _exponent( (Residu_t)(ex + (Residu_t)Exponent_Trait(bF)) )
, _cardinality( (Integer) pow( Integer(bF.cardinality()) , (uint64_t)(ex) ) )
, zero( (Element)(_pD.zero))
, one ( (Element)(_pD.one))
, mOne ( (Element)(_pD.mOne))
{
Degree eo ((int64_t)_extension_order);
if (_cardinality < (1<<20) )
_pD.creux_random_irreducible( _irred, eo);
else
_pD.random_irreducible( _irred, eo);
}
Extension ( const Pol_t& polydomain, const PolElement& Irred) :
_bF( polydomain.getdomain() )
, _pD( polydomain )
, _irred( Irred )
, _characteristic( (Residu_t) _bF.characteristic() )
, _extension_order( (Residu_t) _pD.degree(Irred).value() )
, _exponent( (Residu_t)( _extension_order + (Residu_t)Exponent_Trait(_bF)) )
, _cardinality( (Integer) pow( Integer(_bF.cardinality()) , (uint64_t)_extension_order ) )
, zero( (Element)(_pD.zero))
, one ( (Element)(_pD.one))
, mOne ( (Element)(_pD.mOne))
{
if (polydomain.isOne(_irred)) {
if (_cardinality < (1<<20) )
_pD.creux_random_irreducible( _irred, (int64_t) _extension_order);
else
_pD.random_irreducible( _irred, (int64_t) _extension_order);
}
}
Extension ( const Self_t& eF) :
_bF( eF._bF ), _pD( eF._pD ), _irred( eF._irred )
, _characteristic( eF._characteristic )
, _extension_order( eF._extension_order )
, _exponent( eF._exponent ), _cardinality( eF._cardinality )
, zero (_pD.zero), one (_pD.one), mOne (_pD.mOne)
{ }
Self_t & operator=(const Self_t& eF)
{
if (this != &eF) {
_bF = eF._bF;
_pD = eF._pD;
_irred = eF._irred;
_characteristic = eF._characteristic;
_exponent = eF._exponent;
_extension_order = eF._extension_order;
_cardinality = eF._cardinality;
zero = eF.zero;
one = eF.one;
mOne = eF.mOne;
}
return *this;
}
PolElement& init( PolElement& e) const
{
return _pD.init(e) ;
}
template<class XXX>
PolElement& init( PolElement& e, const XXX& i) const
{
return _pD.modin( _pD.init(e, i), _irred) ;
}
PolElement& assign( PolElement& e, const BFElement& a) const
{
return _pD.assign(e, a) ;
}
PolElement& assign( PolElement& e, const PolElement& a) const
{
return _pD.assign(e, a) ;
}
Integer& convert(Integer& i, const PolElement& e) const {
return (Poly1PadicDom<BaseField_t>(_pD)).eval(i, e);
}
PolElement& init(PolElement& e, const Integer& i) const {
return (Poly1PadicDom<BaseField_t>(_pD)).radix(e, i, _extension_order);
}
template<class XXX>
XXX& convert( XXX& i, const PolElement& e) const
{
return _pD.convert( i, e) ;
}
PolElement& add (PolElement& r, const PolElement& a, const PolElement& b) const
{
return _pD.add( r, a, b);
}
PolElement& sub (PolElement& r, const PolElement& a, const PolElement& b) const
{
return _pD.sub( r, a, b);
}
PolElement& neg (PolElement& r, const PolElement& a) const
{
return _pD.neg( r, a );
}
PolElement& mul (PolElement& r, const PolElement& a, const PolElement& b) const
{
return _pD.modin( _pD.mul( r, a, b), _irred );
}
PolElement& inv (PolElement& r, const PolElement& a) const
{
// _pD.write(_pD.write(_pD.write( std::cerr << "(", _pD.invmod( r, a, _irred)) << ") * (", a) << ") == 1 + V * (", _irred) << std::endl;
return _pD.invmod( r, a, _irred);
}
PolElement& div (PolElement& r, const PolElement& a, const PolElement& b) const
{
return _pD.modin( _pD.mulin( inv(r, b), a), _irred );
}
PolElement& axpy (PolElement& r, const PolElement& a, const PolElement& b, const PolElement& c) const
{
// return _pD.modin( _pD.addin(_pD.mul( r, a, b), c), _irred );
// return _pD.modin( _pD.axpy(r, a, b, c), _irred );
return addin(mul(r,a,b),c);
}
// -- maxpy: r <- c - a * b mod p
PolElement& maxpy (PolElement& r, const PolElement a, const PolElement b, const PolElement c) const
{
return _pD.modin( _pD.maxpy( r, a, b, c), _irred );
}
// -- maxpyin: r <- r - a * b mod p
PolElement& maxpyin(PolElement& r, const PolElement a, const PolElement b) const
{
return _pD.modin( _pD.maxpyin( r, a, b), _irred );
}
// -- axmy: r <- a * x - y mod p
PolElement& axmy (PolElement& r, const PolElement a, const PolElement b, const PolElement c) const
{
return subin(mul(r,a,b),c);
}
// -- axmyin: r <- a * x - r mod p
PolElement& axmyin(PolElement& r, const PolElement a, const PolElement b) const
{
maxpyin(r,a,b);
return negin(r);
}
PolElement& addin(PolElement& r, const PolElement& b) const
{
return _pD.addin( r, b);
}
PolElement& subin(PolElement& r, const PolElement& b) const
{
return _pD.subin( r, b);
}
PolElement& negin(PolElement& r) const
{
return _pD.negin( r );
}
PolElement& mulin(PolElement& r, const PolElement& b) const
{
return _pD.modin( _pD.mulin( r, b), _irred );
}
PolElement& invin(PolElement& r) const
{
PolElement a(r);
return _pD.invmod( r, a, _irred);
}
PolElement& divin(PolElement& r, const PolElement& b) const
{
PolElement tmp;
inv(tmp,b);
return _pD.modin( _pD.mulin( r, tmp), _irred );
}
PolElement& axpyin(PolElement& r, const PolElement& b, const PolElement& c) const
{
PolElement tmp; _pD.mul(tmp,b,c);
return _pD.modin( _pD.addin( r, tmp), _irred );
}
bool areEqual (const PolElement& b, const PolElement& c) const
{
return _pD.areEqual( b, c) ;
}
bool isZero (const PolElement& b) const
{
return _pD.isZero(b) ;
}
bool isOne (const PolElement& b) const
{
return _pD.isOne(b) ;
}
bool isMOne (const PolElement& b) const
{
return _pD.isMOne(b) ;
}
template<class RandIter> Element& random(RandIter& g, Element& r) const
{
return _pD.random(g,r,Degree((int64_t)_exponent-1));
}
template<class RandIter> Element& random(RandIter& g, Element& r, int64_t s) const
{
return _pD.random(g,r,(s>=_exponent?_exponent-1:s));
}
template<class RandIter> Element& random(RandIter& g, Element& r, const Element& b) const
{
return _pD.random(g,r,b.size());
}
template<class RandIter> Element& nonzerorandom(RandIter& g, Element& r) const
{
return _pD.nonzerorandom(g,r,Degree((int64_t)_exponent-1));
}
template<class RandIter> Element& nonzerorandom(RandIter& g, Element& r, int64_t s) const
{
return _pD.nonzerorandom(g,r,(s>=_exponent?_exponent-1:s));
}
template<class RandIter> Element& nonzerorandom(RandIter& g, Element& r, const Element& b) const
{
return _pD.nonzerorandom(g,r,b.size());
}
typedef GIV_ExtensionrandIter< Self_t, Integer > RandIter;
Integer &cardinality (Integer &c) const
{
return c=_cardinality;
}
Residu_t cardinality() const
{
return _cardinality ;
}
Integer &characteristic (Integer &c) const
{
return c=_characteristic;
}
Residu_t characteristic() const
{
return _characteristic;
}
int64_t & characteristic(int64_t & c) const
{
return c = (int64_t) _characteristic;
}
Residu_t exponent() const
{
return _exponent;
}
Residu_t order() const
{
return _extension_order;
}
PolElement& irreducible(PolElement& P) const
{
return _pD.assign(P, _irred);
}
const PolElement& irreducible() const {
return _irred;
}
const BaseField_t& base_field() const
{
return _bF;
}
const Pol_t& polynomial_domain() const
{
return _pD;
}
std::ostream& write( std::ostream& o ) const
{
return _pD.write( _pD.write(o) << "/(", _irred) << ")";
}
std::istream& read ( std::istream& s, PolElement& a ) const
{
_pD.read( s, a);
_pD.modin( a, _irred);
return s;
}
std::ostream& write( std::ostream& o, const PolElement& R) const
{
return _pD.write( o, R );
}
std::istream& read( std::istream& o ) const
{
std::cerr << "READ Extension, NOT YET IMPLEMENTED" << std::endl;
return o;
}
};
//! Extension rand iters
template <class ExtensionField, class Type>
class GIV_ExtensionrandIter {
public:
/** @name Common Object Interface.
* These methods are required of all LinBox random field Element generators.
*/
//@{
/** Field Element type.
* The field Element must contain a default constructor,
* a copy constructor, a destructor, and an assignment operator.
*/
typedef typename ExtensionField::PolElement Element;
/** Constructor from field, sampling size, and seed.
* The random field Element iterator works in the field F, is seeded
* by seed, and it returns any one Element with probability no more
* than 1/min(size, F.cardinality()).
* A sampling size of zero means to sample from the entire field.
* A seed of zero means to use some arbitrary seed for the generator.
* This implementation sets the sampling size to be no more than the
* cardinality of the field.
* @param F LinBox field archetype object in which to do arithmetic
* @param size constant integer reference of sample size from which to
* sample (default = 0)
* @param seed constant integer reference from which to seed random number
* generator (default = 0)
*/
GIV_ExtensionrandIter(const ExtensionField& F,
const Type& size = 0,
const Type& seed = 0) :
_size(size), _givrand( GivRandom(seed) ), _field(F)
{
Type charact = Type( F.characteristic() );
if ((_size > charact) || (_size == 0) )
_size = charact;
}
/** Copy constructor.
* Constructs ALP_randIter object by copying the random field
* Element generator.
* This is required to allow generator objects to be passed by value
* into functions.
* In this implementation, this means copying the random field Element
* generator to which R._randIter_ptr points.
* @param R ALP_randIter object.
*/
GIV_ExtensionrandIter(const GIV_ExtensionrandIter& R) :
_size(R._size), _givrand(R._givrand) , _field(R._field)
{}
/** Destructor.
* This destructs the random field Element generator object.
* In this implementation, this destroys the generator by deleting
* the random generator object to which _randIter_ptr points.
*/
~GIV_ExtensionrandIter(void) {}
// /** Assignment operator.
// * Assigns ALP_randIter object R to generator.
// * In this implementation, this means copying the generator to
// * which R._randIter_ptr points.
// * @param R ALP_randIter object.
// */
// GIV_ExtensionrandIter<ExtensionField,Type>& operator= ( const GIV_ExtensionrandIter< ExtensionField, Type >& R )
// {
// if (this != &R) // guard against self-assignment
// {
// _size = R._size;
// _givrand = R._givrand;
// _field = R._field;
// }
// return *this;
// }
/** Random field Element creator with assignement.
* This returns a random field Element from the information supplied
* at the creation of the generator.
* @return random field Element
*/
Element& random(Element& elt) const
{
// Create new random Elements
elt.resize( (uint64_t)(_field.order()));
for(typename Element::iterator it = elt.begin(); it != elt.end() ; ++ it) {
int64_t tmp = static_cast<int64_t>((double (_givrand()) / double(_GIVRAN_MODULO_)) * double(_size));
(_field.base_field()).init(*it , tmp);
//(_field.base_field()) . random (*it);
}
return elt;
} // Element& random(Element& )
/** Random field Element creator with assignement.
* This returns a random field Element from the information supplied
* at the creation of the generator.
* @return random field Element
*/
Element& operator()(Element& elt) const
{
return this->random(elt);
}
/** Random field Element creator.
* This returns a random field Element from the information supplied
* at the creation of the generator.
* @return random field Element
*/
Element& operator() (void)
{
Element* x=new Element;
return this->random(*x);
} // Element& operator() (void)
//@} Common Object Iterface
const ExtensionField& ring() { return _field; }
private:
/// Sampling size
Type _size;
/// Random generator
GivRandom _givrand;
/// ExtensionField
const ExtensionField& _field;
}; // class GIV_ExtensionrandIter
} // namespace Givaro
#endif //__GIVARO_extension_H
/* -*- mode: C++; tab-width: 4; indent-tabs-mode: t; c-basic-offset: 4 -*- */
// vim:sts=4:sw=4:ts=4:noet:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s
|