This file is indexed.

/usr/include/givaro/givintrns.h is in libgivaro-dev 4.0.2-8ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
// ==========================================================================
// Copyright(c)'1994-2009 by The Givaro group
// This file is part of Givaro.
// Givaro is governed by the CeCILL-B license under French law
// and abiding by the rules of distribution of free software.
// see the COPYRIGHT file for more details.
// Authors: T. Gautier
// Time-stamp: <08 Feb 02 16:33:39 Jean-Guillaume.Dumas@imag.fr>
// ==========================================================================
/** @file givintrns.h
 * @ingroup CRA
 * @brief arithmetic for RNS representations.
 *  Modular arithmetic for GIVARO. Here is defined arithmetic functions
 * on rns representation with Givaro Integers.
 */

#ifndef __GIVARO__arithmodu_intrns_H
#define __GIVARO__arithmodu_intrns_H

#include "givaro/givconfig.h"
#include "givaro/givinteger.h"

// ---------------------------------------------  class RNSsystem
// Structure which manages list of primes in order to do

namespace Givaro {
	// #ifndef __ECC

	//! RNS system class. No doc.
	template< template<class, class> class Container, template <class> class Alloc>
	class IntRNSsystem : public IntegerDom {
	public:
		//     typedef Element    Ring;
		//     typedef Element   Modulo;
		typedef Element   external;
		typedef Container< Element, Alloc<Element> > array;


		// Default Cstor, Dstor/Cstor of recopy:
		// -- free memory allocated in array !
		IntRNSsystem() : _primes(0), _prod(one), _ck(0) {}
		~IntRNSsystem(){}
		IntRNSsystem(const IntRNSsystem& R) : _primes(R._primes), _prod(R._prod), _ck(R._primes) {}

		// -- Cstor with given primes
		IntRNSsystem( const array& primes );

		template<class TT>
		IntRNSsystem( const Container< TT, Alloc<TT> > & primes );

		// -- Computation of a mixed-radix representation of the residus.
		//     void RnsToMixedRadix(array&  mixrad, const array&  residu) const;
		template<class TT>
		void RnsToMixedRadix(array&  mixrad, const Container<TT, Alloc<TT> >&  residu) ;

		// -- Convert a mixed radix representation to an external
		void MixedRadixToRing( external& res,  const array& mixrad ) const;

		// -- Convert an Ring Element to a its representation
		// with the "this" rns system.
		void RingToRns( array& residu, const external& a ) ;

		// -- Fast conversion: requires pre-computation (first time it was called)
		void fastRingToRns( array& residu, const external& a ) const;

		// -- Convert a representation to an external Element
		template<class TT>
		void RnsToRing( external& a, const Container<TT, Alloc<TT> >& residu ) ;

		// -- Fast conversion: requires pre-computation (first time it was called)
		void fastRnsToRing( external& a, const array& residu ) const;

		// ------------- Access methods

		// -- Returns the number of primes of this ctxt
		int NumOfPrimes() const { return _primes.size(); }

		// -- Returns a array to the begin of the array of primes
		const array& Primes() const;
		// -- Returns the ith primes of the rns system
		const Element ith(const size_t i) const;

		// -- Returns a array of the reciprocal ck = (\prod_{j=0..k-1)p_j)^(-1) [pk]
		const array& Reciprocals() const;
		const Element reciprocal(const size_t i) const;
		const Element product() const;

	protected:
		// -- Compute some fields of the structure :
		void ComputeCk();

		// -- Compute product of primes
		void ComputeProd();

		// -- Compute the Qk for Ring -> RNS, allocate U
		void ComputeQk();

		array  _primes; 	// - array of the relatively primes numbers
		Element _prod;      // - product of primes
		array  _ck;     	// - reciprocals, _ck[0] = 1, same size as _primes

		// -- for fast conversion
		size_t _sizek;
		size_t _log2k;
		array  _qk;	// - cf algo Aho, Hopcroft & Ullman
		array  _u;	// - cf algo Aho, Hopcroft & Ullman
	};
	// #endif

#if 0 // defined(__ECC)
	//#else
	/* template<class Container> */
	/* class IntRNSsystem : public IntegerDom { */
	/* public: */
	/* //     typedef Element    Ring; */
	/* //     typedef Element   Modulo; */
	/*     typedef Element   external; */
	/*     typedef Container array; */


	/*         // Default Cstor, Dstor/Cstor of recopy:  */
	/* 	// -- free memory allocated in array ! */
	/*     IntRNSsystem() : _primes(0), _prod(one), _ck(0) {} */
	/*     ~IntRNSsystem(){}  */
	/*     IntRNSsystem(const IntRNSsystem& R) : _primes(R._primes), _prod(R._prod), _ck(R._primes) {} */

	/*         // -- Cstor with given primes  */
	/*     IntRNSsystem( const array& primes ); */

	/*     template<class ContTT> */
	/*     IntRNSsystem( const ContTT& primes ); */

	/*         // -- Computation of a mixed-radix representation of the residus. */
	/* //     void RnsToMixedRadix(array&  mixrad, const array&  residu) const;  */
	/*     template<class ContTT> */
	/*     void RnsToMixedRadix(array&  mixrad, const ContTT&  residu) const;  */

	/*         // -- Convert a mixed radix representation to an external */
	/*     void MixedRadixToRing( external& res,  const array& mixrad ) const; */

	/*         // -- Convert an Ring Element to a its representation */
	/*         // with the "this" rns system. */
	/*     void RingToRns( array& residu, const external& a ) const; */

	/*         // -- Fast conversion: requires pre-computation (first time it was called) */
	/*     void fastRingToRns( array& residu, const external& a ) const; */

	/*         // -- Convert a representation to an external Element */
	/*     template<class ContTT> */
	/*     void RnsToRing( external& a, const ContTT& residu ) const; */

	/*         // -- Fast conversion: requires pre-computation (first time it was called) */
	/*     void fastRnsToRing( external& a, const array& residu ) const; */

	/*         // ------------- Access methods */

	/*         // -- Returns the number of primes of this ctxt */
	/*     int NumOfPrimes() const { return _primes.size(); }  */

	/*         // -- Returns a array to the begin of the array of primes */
	/*     const array& Primes() const; */
	/*         // -- Returns the ith primes of the rns system */
	/*     const Element ith(const size_t i) const; */

	/*         // -- Returns a array of the reciprocal ck = (\prod_{j=0..k-1)p_j)^(-1) [pk] */
	/*     const array& Reciprocals() const; */
	/*     const Element reciprocal(const size_t i) const; */
	/*     const Element product() const; */

	/* protected: */
	/*         // -- Compute some fields of the structure : */
	/*     void ComputeCk(); */

	/*         // -- Compute product of primes */
	/*     void ComputeProd(); */

	/*         // -- Compute the Qk for Ring -> RNS, allocate U */
	/*     void ComputeQk(); */

	/*     array  _primes; 	// - array of the relatively primes numbers */
	/*     Element _prod;      // - product of primes */
	/*     array  _ck;     	// - reciprocals, _ck[0] = 1, same size as _primes  */

	/*         // -- for fast conversion */
	/*     size_t _sizek; */
	/*     size_t _log2k; */
	/*     array  _qk;	// - cf algo Aho, Hopcroft & Ullman */
	/*     array  _u;	// - cf algo Aho, Hopcroft & Ullman */
	/* }; */
	/* #endif */
#endif

} // Givaro

#include "givaro/givintrns_cstor.inl"
#include "givaro/givintrns_convert.inl"

#endif // __GIVARO__arithmodu_intrns_H

// vim:sts=8:sw=8:ts=8:noet:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s