/usr/include/givaro/givpoly1crtcstor.inl is in libgivaro-dev 4.0.2-8ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 | // ==========================================================================
// Copyright(c)'1994-2009 by The Givaro group
// This file is part of Givaro.
// Givaro is governed by the CeCILL-B license under French law
// and abiding by the rules of distribution of free software.
// see the COPYRIGHT file for more details.
// Authors: J-G Dumas
// Time-stamp: <09 Jun 10 18:15:58 Jean-Guillaume.Dumas@imag.fr>
// Description: Polynomial Chinese Remaindering of degree 1
// ==========================================================================
#ifndef __GIVARO_poly1_crt_cstor_INL
#define __GIVARO_poly1_crt_cstor_INL
namespace Givaro {
// -- free memory allocated in array !
template<class Field>
Poly1CRT<Field>::~Poly1CRT()
{}
template<class Field>
Poly1CRT<Field>::Poly1CRT ()
: _XIndet(), _F(), _PolRing(), _primes(0), _ck(0)
{}
template<class Field>
Poly1CRT<Field>::Poly1CRT (const Self_t& R)
: _XIndet(R._XIndet),
_F(R._F),
_PolRing(R._PolRing),
_primes(R._primes),
_ck(R._ck)
{}
// -- Array of primes are given
template<class Field>
Poly1CRT<Field>::Poly1CRT( const Field& F, const array_T& inprimes, const Indeter& X)
: _XIndet(X),
_F(F),
_PolRing(F,X),
_primes(inprimes),
_ck(0)
{
GIVARO_ASSERT( inprimes.size()>0, "[Poly1CRT<Field>::Poly1CRT] bad size of array");
// for(typename array_T::const_iterator it=_primes.begin(); it!=_primes.end();++it)
// _F.write(std::cout, *it) << std::endl;
}
// -- Computes Ck , Ck = (\prod_{i=0}^{k-1} primes[i])^(-1) % primes[k],
// for k=1..(_sz-1)
template<class Field>
void Poly1CRT<Field>::ComputeCk()
{
if (_ck.size() !=0) return; // -- already computed
size_t Size = _primes.size();
_ck.resize(Size+1);
Element irred; _PolRing.init(irred, Degree(1));
Element prod; _PolRing.init(prod, Degree(0));
// Never used
// _PolRing.assign(_ck[0], prod);
for (size_t k=1; k < Size; ++k) {
_F.assign(irred[0], _primes[k-1]);
_F.negin(irred[0]);
// _PolRing.write(std::cerr<< "irred["<<k<<"]: ", irred) <<std::endl;
_PolRing.mulin(prod, irred);
// _PolRing.write(std::cerr<< "prod["<<k<<"]: ", prod) <<std::endl;
Type_t invC; _F.init(invC);
_PolRing.eval(invC, prod, _primes[k]);
// _F.write(std::cerr<< "eval["<<k<<"]: ", invC) <<std::endl;
_F.invin(invC);
// _F.write(std::cerr<< "inv["<<k<<"]: ", invC) <<std::endl;
_PolRing.mul(_ck[k],prod,invC);
// _PolRing.write(std::cerr<< "mul["<<k<<"]: ", _ck[k]) <<std::endl;
}
_F.assign(irred[0], _primes[Size-1]);
_F.negin(irred[0]);
_PolRing.mul(_ck[Size], prod, irred);
// for(typename array_E::const_iterator it=_ck.begin(); it!=_ck.end();++it)
// _PolRing.write(std::cout, *it) << std::endl;
}
template<class Field>
const typename Poly1CRT<Field>::array_T& Poly1CRT<Field>::Primes() const
{
return _primes;
}
template<class Field>
const typename Poly1CRT<Field>::Type_t& Poly1CRT<Field>::ith(const size_t i) const
{
return _primes[i];
}
template<class Field>
const typename Poly1CRT<Field>::array_E& Poly1CRT<Field>::Reciprocals() const
{
if (_ck.size() ==0) ((Poly1CRT<Field>*)this)->ComputeCk();
return _ck;
}
template<class Field>
const typename Poly1CRT<Field>::Element& Poly1CRT<Field>::reciprocal(const size_t i) const
{
if (_ck.size() ==0) ((Poly1CRT<Field>*)this)->ComputeCk();
return _ck[i];
}
} // Givaro
#endif // __GIVARO_poly1_crt_cstor_INL
|