This file is indexed.

/usr/include/givaro/givquotientdomain.h is in libgivaro-dev 4.0.2-8ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
// ===============================================================
// Copyright(c)'1994-2009 by The Givaro group
// This file is part of Givaro.
// Givaro is governed by the CeCILL-B license under French law
// and abiding by the rules of distribution of free software.
// see the COPYRIGHT file for more details.
// Time-stamp: <19 Oct 10 18:35:20 Jean-Guillaume.Dumas@imag.fr>
// Author: J-G. Dumas
// Description: Quotients over a Ring domain
// ===============================================================
#ifndef __GIVARO_quotient_domain_H
#define __GIVARO_quotient_domain_H
#include <givaro/givpower.h>
#ifndef GIVABS
#define GIVABS(a) ((a)>0?(a):-(a))
#endif

namespace Givaro {
template<class RingDom>
struct QuotientDom : public RingDom {
public :
	// -- Self_t
	typedef          QuotientDom<RingDom>	Self_t;

	// -- Exported types
	typedef	     RingDom			Ring_t;
	typedef typename RingDom::Element		Ring_E;
	typedef Ring_E				Element;
	typedef Ring_E				Rep;
protected :
	Rep _modulo;

public :
	QuotientDom (const RingDom& R, const Element& Mod ) : Ring_t(R), _modulo(Mod) {}
	QuotientDom (const Self_t& F) : Ring_t(static_cast<const Ring_t&>(F)), _modulo(F._modulo) {}

	Rep& init(Rep& a) const
	{ return Ring_t::modin(Ring_t::init(a),_modulo); }

	template<class XXX>
	Rep& init(Rep& p, const XXX &cste ) const
	{
		return Ring_t::modin(Ring_t::init(p,cste),_modulo);
	}

	Rep& assign(Rep& p) const
	{
		return Ring_t::modin(p,_modulo);
	}
	Rep& assign(Rep& p, const Rep& Q) const
	{
		return Ring_t::modin(Ring_t::assign(p,Q),_modulo);
	}

	// -- Comparaison operator
	int isZero  ( const Rep& P ) const
	{ return Ring_t::isZero(P); }
	int isOne   ( const Rep& P ) const
	{ return Ring_t::isOne(P); }
	int isMOne   ( const Rep& P ) const
	{ return Ring_t::isMOne(P); }

	int areEqual ( const Rep& P, const Rep& Q ) const
	{
		return Ring_t::areEqual(P, Q);
	}
	int areNEqual( const Rep& P, const Rep& Q ) const
	{
		return Ring_t::areNEqual(P, Q) ;
	}

	// --
	std::istream& read ( std::istream& i ) {
		char tmp;
		return Ring_t::read(Ring_t::read(i) >> tmp);
	}
	std::ostream& write( std::ostream& o ) const
	{
		return Ring_t::write( Ring_t::write(o) << '/', _modulo);
	}
	std::istream& read ( std::istream& i, Rep& n) const
	{
		return Ring_t::read(i,n);
	}
	std::ostream& write( std::ostream& o, const Rep& n) const
	{
		return Ring_t::write(o,n);
	}

	// -- Arithmetics operators
	Rep& mulin ( Rep& q, const Rep& a ) const
	{
		return Ring_t::modin(Ring_t::mulin(q,a), _modulo);
	}
	Rep& mul   ( Rep& q, const Rep& a, const Rep& b ) const
	{
		return Ring_t::modin(Ring_t::mul(q,a,b), _modulo);
	}
	Rep& addin ( Rep& r, const Rep& u ) const
	{
		return Ring_t::modin(Ring_t::addin(r,u), _modulo);
	}
	Rep& add ( Rep& r, const Rep& u, const Rep& v ) const
	{
		return Ring_t::modin(Ring_t::add(r,u,v), _modulo);
	}
	Rep& subin ( Rep& r, const Rep& u ) const
	{
		return Ring_t::modin(Ring_t::subin(r,u), _modulo);
	}
	Rep& sub ( Rep& r, const Rep& u, const Rep& v ) const
	{
		return Ring_t::modin(Ring_t::sub(r,u,v), _modulo);
	}
	Rep& negin ( Rep& r ) const
	{
		return Ring_t::modin(Ring_t::negin(r),_modulo);
	}
	Rep& neg ( Rep& r, const Rep& u ) const
	{
		return Ring_t::modin(Ring_t::neg(r,u),_modulo);
	}
	Rep& invin ( Rep& q) const
	{
		Rep t; Ring_t::invmod(t,q,_modulo);
		return Ring_t::assign(q,t);
	}
	Rep& inv( Rep& r, const Rep& u) const
	{
		return Ring_t::invmod(r,u,_modulo);
	}

	Rep& divin ( Rep& q, const Rep& a ) const
	{
		Rep t;
		return this->mulin(q,this->inv(t,a));
	}
	Rep& div   ( Rep& q, const Rep& a, const Rep& b ) const
	{
		return this->mulin(this->inv(q, b),a);
	}
	Rep& axpy  (Rep& r, const Rep& a, const Rep& x, const Rep& y) const
	{
		return Ring_t::modin(Ring_t::axpy(r,a,x,y), _modulo);
	}
	Rep& axpyin(Rep& r, const Rep& a, const Rep& x) const
	{
		return Ring_t::modin(Ring_t::axpyin(r,a,x), _modulo);
	}
	// -- maxpy: r <- y - a * x
	Rep& maxpy  (Rep& r, const Rep& a, const Rep& x, const Rep& y) const
	{
		return Ring_t::modin(Ring_t::maxpy(r,a,x,y), _modulo);
	}
	// -- axmyin: r <- a * x - r
	Rep& axmyin(Rep& r, const Rep& a, const Rep& x) const
	{
		return Ring_t::modin(Ring_t::axmyin(r,a,x), _modulo);
	}
	// -- maxpyin: r <- r - a * x
	Rep& maxpyin(Rep& r, const Rep& a, const Rep& x) const
	{
		return Ring_t::modin(Ring_t::maxpyin(r,a,x), _modulo);
	}
	// -- axmy: r <- a * x - y
	Rep& axmy  (Rep& r, const Rep& a, const Rep& x, const Rep& y) const
	{
		return Ring_t::modin(Ring_t::axmy(r,a,x,y), _modulo);
	}
	// -- misc
	// -- W <-- P^n
	Rep& pow( Rep& W, const Rep& P, long n) const
	{
		unsigned long l = (unsigned long)GIVABS(n);
		if (n>0)
			return dom_power(W, P, l, *this);
		else {
			Rep invP; this->inv(invP,P);
			return dom_power(W, invP, l, *this);
		}
	}
	// -- Random generators
	template< class RandIter >
       	Rep& random(RandIter& g, Rep& r) const
	{
		return Ring_t::modin(Ring_t::random(g, r),_modulo);
	}

	template< class RandIter, class XXX >
       	Rep& random(RandIter& g, Rep& r, const XXX& s) const
	{
		return Ring_t::modin(Ring_t::random(g, r, s),_modulo);
	}

	template< class RandIter > Rep&
       	nonzerorandom(RandIter& g, Rep& r) const
	{
		return Ring_t::modin(Ring_t::nonzerorandom(g, r),_modulo);
	}
	template< class RandIter, class XXX  >
       	Rep& nonzerorandom(RandIter& g, Rep& r, const XXX& s) const
	{
		return Ring_t::modin(Ring_t::nonzerorandom(g, r, s),_modulo);
	}

};

} // Givaro

#endif
// vim:sts=8:sw=8:ts=8:noet:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s