/usr/include/givaro/modular-float.inl is in libgivaro-dev 4.0.2-8ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 | // ==========================================================================
// Copyright(c)'1994-2015 by The Givaro group
// This file is part of Givaro.
// Givaro is governed by the CeCILL-B license under French law
// and abiding by the rules of distribution of free software.
// see the COPYRIGHT file for more details.
// Authors: Brice Boyer (briceboyer) <boyer.brice@gmail.com>
// A. Breust (taken from FFLAS-FFPACK)
// ==========================================================================
#ifndef __GIVARO_modular_float_INL
#define __GIVARO_modular_float_INL
#include "givaro/modular-defines.h"
namespace Givaro {
// --------------------
// ----- Initialisation
inline Modular<float>::Element&
Modular<float>::init(Element& a) const
{
return a = zero;
}
inline Modular<float>::Element&
Modular<float>::init(Element& r, const double a) const
{
r = static_cast<float>(std::fmod(a, _p));
if (r < 0.f) r += _p;
return r;
}
inline Modular<float>::Element&
Modular<float>::init(Element& r, const int32_t a) const
{
r = static_cast<Element>(std::abs(a) % _lp);
if (a < 0) negin(r);
return r;
}
inline Modular<float>::Element&
Modular<float>::init(Element& r, const uint32_t a) const
{
return r = static_cast<Element>(a % uint32_t(_lp));
}
inline Modular<float>::Element&
Modular<float>::init(Element& r, const int64_t a) const
{
r = static_cast<Element>(std::abs(a) % int64_t(_lp));
if (a < 0) negin(r);
return r;
}
inline Modular<float>::Element&
Modular<float>::init(Element& r, const uint64_t a) const
{
return r = static_cast<Element>(a % uint64_t(_lp));
}
inline Modular<float>::Element&
Modular<float>::init(Element& r, const Integer& a) const
{
r = static_cast<Element>(a % _lp);
if (a < 0) negin(r);
return r;
}
inline Modular<float>::Element&
Modular<float>::assign (Element &x, const Element &y) const
{
return x = y;
}
// ------------------------
// ----- Convert and reduce
inline Modular<float>::Element& Modular<float>::reduce (Element& x) const
{
x = std::fmod(x, _p);
if (x < 0.f) x += _p;
return x;
}
inline Modular<float>::Element& Modular<float>::reduce (Element& x, const Element& y) const
{
x = std::fmod(y, _p);
if (x < 0.f) x += _p;
return x;
}
// ------------------------
// ----- Classic arithmetic
inline Modular<float>::Element &Modular<float>::add
(Element &x, const Element &y, const Element &z) const
{
__GIVARO_MODULAR_FLOATING_ADD(x,_p,y,z);
return x;
}
inline Modular<float>::Element &Modular<float>::sub
(Element &x, const Element &y, const Element &z) const
{
return __GIVARO_MODULAR_FLOATING_SUB(x,_p,y,z);
}
inline Modular<float>::Element &Modular<float>::mul
(Element &x, const Element &y, const Element &z) const
{
return __GIVARO_MODULAR_FLOATING_MUL(x,_p,y,z);
}
inline Modular<float>::Element &Modular<float>::div
(Element &x, const Element &y, const Element &z) const
{
return mulin(inv(x, z), y);
}
inline Modular<float>::Element &Modular<float>::neg
(Element &x, const Element &y) const
{
return __GIVARO_MODULAR_FLOATING_NEG(x,_p,y);
}
inline Modular<float>::Element &Modular<float>::inv
(Element &x, const Element &y) const
{
// The extended Euclidean algorithm
int32_t x_int, y_int, tx, ty;
x_int = int32_t(_lp);
y_int = int32_t(y);
tx = 0;
ty = 1;
while (y_int != 0) {
// always: gcd (modulus,residue) = gcd (x_int,y_int)
// sx*modulus + tx*residue = x_int
// sy*modulus + ty*residue = y_int
int32_t q = x_int / y_int; // integer quotient
int32_t temp = y_int; y_int = x_int - q * y_int;
x_int = temp;
temp = ty; ty = tx - q * ty;
tx = temp;
}
if (tx < 0) tx += int32_t(_p);
// now x_int = gcd (modulus,residue)
return x = Element(tx);
}
inline Modular<float>::Element &Modular<float>::addin
(Element &x, const Element &y) const
{
__GIVARO_MODULAR_FLOATING_ADDIN(x,_p,y);
return x;
}
inline Modular<float>::Element &Modular<float>::subin
(Element &x, const Element &y) const
{
__GIVARO_MODULAR_FLOATING_SUBIN(x,_p,y);
return x;
}
inline Modular<float>::Element &Modular<float>::mulin
(Element &x, const Element &y) const
{
return __GIVARO_MODULAR_FLOATING_MULIN(x,_p,y);
}
inline Modular<float>::Element &Modular<float>::divin
(Element &x, const Element &y) const
{
Modular<float>::Element iy;
return mulin(x, inv(iy, y));
}
inline Modular<float>::Element &Modular<float>::negin
(Element &x) const
{
return __GIVARO_MODULAR_FLOATING_NEGIN(x,_p);
}
inline Modular<float>::Element &Modular<float>::invin
(Element &x) const
{
return inv(x, x);
}
// -- axpy: r <- a * x + y
inline Modular<float>::Element &Modular<float>::axpy
(Element &r, const Element &a, const Element &x, const Element &y) const
{
__GIVARO_MODULAR_FLOATING_MULADD(r, _p, a, x, y);
return r;
}
inline Modular<float>::Element &Modular<float>::axpyin
(Element &r, const Element &a, const Element &x) const
{
__GIVARO_MODULAR_FLOATING_MULADDIN(r, _p, a, x);
return r;
}
// -- axmy: r <- a * x - y
inline Modular<float>::Element &Modular<float>::axmy
(Element& r, const Element &a, const Element &x, const Element &y) const
{
__GIVARO_MODULAR_FLOATING_MULSUB(r, _p, a, x, y);
return r;
}
inline Modular<float>::Element &Modular<float>::axmyin
(Element& r, const Element &a, const Element &x) const
{
maxpyin(r,a,x);
return negin(r);
}
// -- maxpy: r <- y - a * x
inline Modular<float>::Element& Modular<float>::maxpy
(Element& r, const Element& a, const Element& x, const Element& y) const
{
r = y;
__GIVARO_MODULAR_FLOATING_SUBMULIN(r, _p, a, x);
return r;
}
inline Modular<float>::Element& Modular<float>::maxpyin
(Element& r, const Element& a, const Element& x) const
{
__GIVARO_MODULAR_FLOATING_SUBMULIN(r, _p, a, x);
return r;
}
// ----------------
// ----- IO methods
inline
std::ostream &Modular<float>::write (std::ostream &os) const
{
return os << "Modular<float> mod " << _lp;
}
inline
std::istream &Modular<float>::read (std::istream &is)
{
is >> _p;
return is;
}
inline
std::ostream &Modular<float>::write (std::ostream &os, const Element &x) const
{
return os << static_cast<uint64_t>(x);
}
inline
std::istream &Modular<float>::read (std::istream &is, Element &x) const
{
int64_t tmp;
is >> tmp;
init(x,tmp);
return is;
}
} // namespace Givaro
#endif // __GIVARO_modular_float_INL
// vim:sts=8:sw=8:ts=8:noet:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s
|