This file is indexed.

/usr/include/givaro/montgomery-int32.h is in libgivaro-dev 4.0.2-8ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
// ==========================================================================
// Copyright(c)'1994-2015 by The Givaro group
// This file is part of Givaro.
// Givaro is governed by the CeCILL-B license under French law
// and abiding by the rules of distribution of free software.
// see the COPYRIGHT file for more details.
// Authors: JG Dumas (from P. Zimmermann's Montgomery implementation)
//          A. Breust (adapted)
// ==========================================================================

/*! @file givmontg32.h
 * @ingroup zpz
 * @brief NO DOC
 */

#ifndef __GIVARO_montg32_H
#define __GIVARO_montg32_H

#include "givaro/udl.h"
#include "givaro/givcaster.h"
#include "givaro/givranditer.h"
#include "givaro/modular-general.h" // invext()
#include "givaro/ring-interface.h"

#include <cmath>

#define B32 65536_ui32
#define MASK32 65535_ui32
#define HALF_BITS32 16

namespace Givaro
{
    template<class TYPE> class Montgomery;

    /*! @brief This class implements the standard arithmetic with Modulo Elements.
     *   Reduction is made through Montgomery's reduction.
     *   Representation of a is by storing (aB).
     *   - We must have gcd(p,2)=1
     *   - We must have \f$(p-1)^2 + p(B-1) < B^2 \f$, i.e. \f$2<p \leq 40504\f$ for \f$B=2^16\f$.
     *   - m max is 40503
     *   - p max is 40499
     */
    template<>
    class Montgomery<int32_t> : public virtual FiniteFieldInterface<uint32_t>
    {
    public:
        // ----- Exported Types and constantes
        using Self_t = Montgomery<int32_t>;
        using Residu_t = uint32_t;
        enum { size_rep = sizeof(Residu_t) };

        // ----- Constantes
        const Element zero = 0;
        const Element one;
        const Element mOne;

        // ----- Constructors
        Montgomery() : one(1U), mOne(0U), _p(0U), _dp(0.0) {}

        Montgomery( Residu_t p, int = 1) :
            one(0U), mOne(0U),
            _p(  (Residu_t)  p),
            _Bp( (Residu_t)  B32%p),
            _B2p((Residu_t)  (_Bp<<HALF_BITS32) % p),
            _B3p((Residu_t)  (_B2p<<HALF_BITS32) % p),
            _nim((Residu_t)  -invext(_p, B32)),
            _dp( (double)    p)
        {
//             std::cerr << "_p: " << _p << std::endl;
//             std::cerr << "_Bp: " << _Bp << std::endl;
//             std::cerr << "_B2p: " << _B2p << std::endl;
//             std::cerr << "_B3p: " << _B3p << std::endl;
//             std::cerr << "_nim: " << _nim << std::endl;
            const_cast<Element&>(one) = _Bp;
            const_cast<Element&>(mOne) = _p - one;
        }

        Montgomery( const Self_t& F)
            : one(F.one), mOne(F.mOne)
            , _p(F._p), _Bp(F._Bp), _B2p( F._B2p), _B3p( F._B3p)
            , _nim(F._nim), _dp(F._dp)
        {}

        Self_t& operator=(const Self_t& F)
        {
            _p = (F._p);
            _Bp = (F._Bp);
            _B2p = ( F._B2p);
            _B3p = ( F._B3p);
            _nim = (F._nim);
            _dp = (F._dp);
            F.assign(const_cast<Element&>(one),  F.one);
            F.assign(const_cast<Element&>(zero), F.zero);
            F.assign(const_cast<Element&>(mOne), F.mOne);
            return *this;
        }
            
        // ----- Accessors
        inline Element minElement() const override { return zero; }
        inline Element maxElement() const override { return mOne; }

        // ----- Access to the modulus
        inline Residu_t residu() const { return _p; }
        inline Residu_t size() const { return _p; }
        inline Residu_t characteristic() const { return _p; }
        inline Residu_t cardinality() const { return _p; }
        template<class T> inline T& characteristic(T& p) const { return p = _p; }
        template<class T> inline T& cardinality(T& p) const { return p = _p; }
        static inline Residu_t maxCardinality() { return 40503; } // 2^15.3
        static inline Residu_t minCardinality() { return 2; }

        // ----- Checkers
        inline bool isZero(const Element& a) const override { return a == zero; }
        inline bool isOne (const Element& a) const override { return a == one; }
        inline bool isMOne(const Element& a) const override { return a == mOne; }
        inline bool areEqual(const Element& a, const Element& b) const override { return a == b; }
        inline size_t length(const Element a) const { return size_rep; }

        // ----- Ring-wise operators
        bool operator==(const Self_t& F) const { return _p == F._p; }
        bool operator!=(const Self_t& F) const { return _p != F._p; }

        // ----- Initialisation
        Element& init (Element& x) const
        { return x = 0; }
        Element& init (Element& x, const double a) const;
        Element& init (Element& x, const int64_t a) const;
        Element& init (Element& x, const uint64_t a) const;
        Element& init (Element& x, const Integer& a) const;
        template<typename T> Element& init(Element& r, const T& a) const
        {
	    // T is supposed to be fit into an Element
            Caster<Element>(r, a < 0? -a : a) %= _p;
            if (a < 0) negin(r);
            return redc(r, r * _B2p);
        }

        Element& assign(Element& x, const Element& y) const
        { return x = y; }
    
        // ----- Convert and reduce
        template<typename T> T& convert(T& r, const Element& a) const
        { Element c; return r = Caster<T>(redc(c, a)); }

        Element& reduce(Element& x, const Element& y) const
        { x = y % _p; return x; }
        Element& reduce(Element& x) const
        { x %= _p; return x; }

        // ----- Classic arithmetic
        Element& mul(Element& r, const Element& a, const Element& b) const override;
        Element& div(Element& r, const Element& a, const Element& b) const override;
        Element& add(Element& r, const Element& a, const Element& b) const override;
        Element& sub(Element& r, const Element& a, const Element& b) const override;
        Element& neg(Element& r, const Element& a) const override;
        Element& inv(Element& r, const Element& a) const override;

        Element& mulin(Element& r, const Element& a) const override;
        Element& divin(Element& r, const Element& a) const override;
        Element& addin(Element& r, const Element& a) const override;
        Element& subin(Element& r, const Element& a) const override;
        Element& negin(Element& r) const override;
        Element& invin(Element& r) const override;

        // -- axpy:   r <- a * x + y
        // -- axpyin: r <- a * x + r
        Element& axpy  (Element& r, const Element& a, const Element& x, const Element& y) const override;
        Element& axpyin(Element& r, const Element& a, const Element& x) const override;

        // -- axmy:   r <- a * x - y
        // -- axmyin: r <- a * x - r
        Element& axmy  (Element& r, const Element& a, const Element& x, const Element& y) const override;
        Element& axmyin(Element& r, const Element& a, const Element& x) const override;

        // -- maxpy:   r <- y - a * x
        // -- maxpyin: r <- r - a * x
        Element& maxpy  (Element& r, const Element& a, const Element& x, const Element& y) const override;
        Element& maxpyin(Element& r, const Element& a, const Element& x) const override;

        // ----- Random generators
        typedef ModularRandIter<Self_t> RandIter;
        typedef GeneralRingNonZeroRandIter<Self_t> NonZeroRandIter;
        template< class Random > Element& random(Random& g, Element& r) const
        { return init(r, g()); }
        template< class Random > Element& nonzerorandom(Random& g, Element& a) const
        { while (isZero(init(a, g()))) {} return a; }

        // --- IO methods
        std::ostream& write(std::ostream& s) const;
        std::istream& read (std::istream& s, Element& a) const;
        std::ostream& write(std::ostream& s, const Element& a) const;

    protected:

        Element& redc(Element&, const Element) const ;
        Element redcal(const Element) const;
        Element redcsal(const Element) const;
        Element& redcin(Element&) const;
        Element& redcs(Element&, const Element) const;
        Element& redcsin(Element&) const;

        // -- data representation of the domain:
        Residu_t _p;
        Residu_t _Bp;
        Residu_t _B2p;
        Residu_t _B3p;
        Residu_t _nim;
        double _dp;
    };
}

#include "givaro/montgomery-int32.inl"

#endif