This file is indexed.

/usr/include/givaro/zring.h is in libgivaro-dev 4.0.2-8ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
// ==========================================================================
// Copyright(c)'1994-2015 by The Givaro group
// This file is part of Givaro.
// Givaro is governed by the CeCILL-B license under French law
// and abiding by the rules of distribution of free software.
// see the COPYRIGHT file for more details.
// Authors: W. J. Turner <wjturner@acm.org>
//          Bradford Hovinen <hovinen@cis.udel.edu>
//          Clement Pernet <clement.pernet@gmail.com> (inserted into FFLAS-FFPACK)
//          A. Breust (taken from FFLAS-FFPACK)
// ==========================================================================


/*! @file field/zring.h
 * @ingroup field
 * @brief  representation of a field of characteristic 0.
 */

#ifndef __GIVARO_ring_zring_H
#define __GIVARO_ring_zring_H

#include <algorithm>
#include <typeinfo>
#include <math.h>

#include "givaro/unparametric-operations.h"
#include "givaro/givranditer.h"
#include "givaro/givinteger.h"

namespace Givaro
{    
    template<class _Element> class ZRing;

    template<typename Domain> struct DomainRandIter {
        typedef GeneralRingRandIter<Domain> RandIter;
    };
    
    template<> struct DomainRandIter<ZRing<Integer>> {
        typedef IntegerDom::RandIter RandIter;
    };    
        

    /** Class ZRing.
     *  Ring of integers, using the _Element base type.
     */
    template<class _Element>
    class ZRing : public UnparametricOperations<_Element>
    {
    public:

        // ----- Exported Types and constantes
        using Element = _Element;
        using Rep = _Element;
        using Self_t = ZRing<Element>;
        using Residu_t = Element;
        using Element_ptr = Element*;
        using ConstElement_ptr = const Element*;
        enum { size_rep = sizeof(Residu_t) };
        
        const Element one  = 1;
        const Element zero = 0;
        const Element mOne = -1;

        //----- Constructors
        ZRing() {}
        ZRing(const ZRing& F) {}
        // Needed in FFLAS, when ZRing is used as delayed field.
        template<class T> ZRing(const T&) {}

        //----- Access
        Residu_t residu() const { return static_cast<Residu_t>(0); }
        Residu_t size() const { return static_cast<Residu_t>(0); }
        Residu_t cardinality() const { return static_cast<Residu_t>(0); }
        Residu_t characteristic() const { return static_cast<Residu_t>(0); }
        template<typename T> T& cardinality(T& c) const { return c = static_cast<T>(0); }
        template<typename T> T& characteristic(T& c) const { return c = static_cast<T>(0); }
        
        static inline Residu_t maxCardinality() { return -1; }
        static inline Residu_t minCardinality() { return 2; }

        //----- Ring-wise operations
        inline bool operator==(const Self_t& F) const { return true; }
        inline bool operator!=(const Self_t& F) const { return false; }
        inline ZRing<Element>& operator=(const ZRing<Element>&) { return *this; }
        // Ring tests
        bool isZero(const Element& a) const { return a == zero; }
        bool isOne (const Element& a) const { return a == one; }
        bool isMOne(const Element& a) const { return a == mOne; }
        bool isUnit(const Element& a) const { return isOne(a) || isMOne(a); }

        Element& abs(Element& x, const Element& a) const {return x= (a>0)? a: -a;}
        Element abs(const Element& a) const {return (a>0)? a: -a;}
        long compare (const Element& a, const Element& b) const {return (a>b)? 1: ((a<b)? -1 : 0);}
        Element& gcd (Element& g, const Element& a, const Element& b) const {return Givaro::gcd(g,a,b);}
        Element& gcdin (Element& g, const Element& b) const{return gcd(g, g, b);} 
        Element& gcd (Element& g, Element& s, Element& t, const Element& a, const Element& b) const{return Givaro::gcd(g,s,t,a,b);}      
        Element &dxgcd(Element &g, Element &s, Element &t, Element &u, Element &v, const Element &a, const Element &b) const
		{
			gcd(g,s,t,a,b);
			div(u,a,g);
			div(v,b,g);
			return g;
		}
        Element& lcm (Element& c, const Element& a, const Element& b) const
            {
                if ((a==Element(0)) || (b==Element(0))) return c = Element(0);
                else {
                    Element g;
                    gcd (g, a, b);
                    c= a*b;
                    c /= g;
                    c=abs (c);
                    return c;
                }
            }

        Element& lcmin (Element& l, const Element& b) const
            {
                if ((l==Element(0)) || (b==Element(0))) return l = Element(0);
                else {
                    Element g;
                    gcd (g, l, b);
                    l*= b;
                    l/= g;
                    l=abs (l);
                    return l;
                }
            }

        void reconstructRational (Element& a, Element& b, const Element& x, const Element& m) const
            {this->RationalReconstruction(a,b, x, m, Givaro::sqrt(m), true, true);}
        void reconstructRational (Element& a, Element& b, const Element& x, const Element& m, const Element& bound) const
            {this->RationalReconstruction(a,b, x, m, bound, true, true);}
        bool reconstructRational (Element& a, Element& b, const Element& x, const Element& m, const Element& a_bound, const Element& b_bound) const
            {
                Element bound = x/b_bound;
                this->RationalReconstruction(a,b,x,m, (bound>a_bound?bound:a_bound), true, false);
                return b <= b_bound;
            }
        Element& quo (Element& q, const Element& a, const Element& b) const {return Integer::floor(q, a, b);}
        Element& rem (Element& r, const Element& a, const Element& b) const {return Integer::mod(r,a,b);}
        Element& quoin (Element& a, const Element& b) const{return quo(a,a,b);}
        Element& remin (Element& a, const Element& b) const {return rem(a,a,b);}
        void quoRem (Element& q, Element& r, const Element& a, const Element& b) const{Integer::divmod(q,r,a,b);}
        bool isDivisor (const Element& a, const Element& b) const
		{
			Element r;
			return rem(r,a,b)==Element(0);
		}

        inline Element& sqrt(Element& x, const Element& y) const{return Givaro::sqrt(x,y);}
        inline  Element powtwo(Element& z, const Element& x) const
            {
                z = 1;
                Element max; init(max, (int64_t)(1<<30));
                if (x < 0) return z;
                    //if (x < (Element)max-1) {
                if (x < max) {
                    z<<=(int32_t)x;
                    return z;
                }
                else {
                    Element n,m;
                    quoRem(n,m,x,max);
                        //quoRem(n,m,x,(Element)(LONG_MAX-1));
                    for (int i=0; i < n; ++i) {
					z <<=(int32_t)max;
                                            //z <<=(long int)(LONG_MAX-1);
                    }
                    z <<= (int32_t)m;
                    return z;
                }
                    //for (Element i=0; i < x; ++i) {
			//      z <<= 1;
			//}
			//return z; // BB peut pas !
		}

		inline  Element logtwo(Element& z, const Element& x) const {return z = x.bitsize() - 1;}


     //----- Initialisation
        Element& init(Element& x) const { return x; }
        template <typename T> Element& init(Element& x, const T& s) const
        { return x = static_cast<const Element&>(s); }
        
        Element& assign(Element& x, const Element& y) const { return x = y; }

        //----- Convert
        template <typename T> T& convert(T& x, const Element& y) const
        { return x = static_cast<const T&>(y); }
        
        Element& reduce (Element& x, const Element& y) const { return x = y; }
        Element& reduce (Element& x) const { return x; }

        // To ensure interface consistency
        Element minElement() const { return 0; }
        Element maxElement() const { return 0; }


        // ----- Random generators
        typedef typename DomainRandIter<Self_t>::RandIter RandIter;
        typedef GeneralRingNonZeroRandIter<Self_t> NonZeroRandIter;
        template< class Random > Element& random(const Random& g, Element& r) const
        { return init(r, g()); }
        template< class Random > Element& nonzerorandom(const Random& g, Element& a) const
        { while (isZero(init(a, g())))
                ;
            return a; }

        //----- IO
        std::ostream& write(std::ostream &os) const
        {
            return os << "ZRing<" << typeid(Element).name() << ')';
        }
        std::ostream& write(std::ostream &os, const Element& a) const
        {
            return os << a;
        }
        std::istream& read(std::istream &is, Element& a) const
        {
            return is >> a;
        }
    protected:
            /*! Rational number reconstruction.
             * \f$\frac{n}{d} \equiv f \mod m\f$, with \f$\vert n
             \vert <k\f$ and \f$0 < \vert d \vert \leq \frac{f}{k}\f$.
             * @bib
             * - von zur Gathen & Gerhard, <i>Modern Computer Algebra</i>,
             *      5.10, Cambridge Univ. Press 1999
             */
        inline void RationalReconstruction( Element& a, Element& b,
                                            const Element& f, const Element& m,
                                            const Element& k,
                                            bool forcereduce, bool recursive ) const
            {
                Element x(f);
                if (x<0) {
                    if ((-x)>m)
                        x %= m;
                    if (x<0)
                        x += m;
                }
                else {
                    if (x>m)
                        x %= m;
                }

                if (x == 0) {
                    a = 0;
                    b = 1;
                }
                else {
                    bool res = ratrecon(a,b,x,m,k, forcereduce, recursive);
                    if (recursive)
                        for( Element newk = k + 1; (!res) && (newk<f) ; ++newk)
                            res = ratrecon(a,b,x,m,newk,forcereduce, true);
                }
            }

            // Precondition f is suppposed strictly positive and strictly less than m
        inline  bool ratrecon( Element& num, Element& den,
                               const Element& f, const Element& m,
                               const Element& k,
                               bool forcereduce, bool recursive ) const
            {

                    //std::cerr << "RatRecon : " << f << " " << m << " " << k << std::endl;
                Element  r0, t0, q, u;
                r0=m;
                t0=0;
                num=f;
                den=1;
                while(num>=k)
                {
                    q = r0;
                    q /= num;   // r0/num
                    u = num;
                    num = r0;  	// num <-- r0
                    r0 = u;	// r0 <-- num
                        //maxpyin(num,u,q);
                    Integer::maxpyin(num,u,q);
                    if (num == 0) return false;

                    u = den;
                    den = t0;  	// num <-- r0
                    t0 = u;	// r0 <-- num
                        //maxpyin(den,u,q);
                    Integer::maxpyin(den,u,q);
                }

                if (forcereduce) {
                        // [GG, MCA, 1999] Theorem 5.26

                        // (ii)
                    Element gg;
                    if (gcd(gg,num,den) != 1) {

                        Element ganum, gar2;
                        for( q = 1, ganum = r0-num, gar2 = r0 ; (ganum < k) && (gar2>=k); ++q ) {
                            ganum -= num;
                            gar2 -= num;
                        }

                            //maxpyin(r0,q,num);
                        Integer::maxpyin(r0,q,num);
                            //maxpyin(t0,q,den);
                        Integer::maxpyin(t0,q,den);

                        if (t0 < 0) {
                            num = -r0;
                            den = -t0;
                        }
                        else {
                            num = r0;
                            den = t0;
                        }

                            // if (t0 > m/k)
                        if (den > m/k) {
                            if (!recursive)
                                std::cerr
                                    << "*** Error *** No rational reconstruction of "
                                    << f
                                    << " modulo "
                                    << m
                                    << " with denominator <= "
                                    << (m/k)
                                    << std::endl;
                        }
                        if (gcd(gg,num,den) != 1) {
                            if (!recursive)
                                std::cerr
                                    << "*** Error *** There exists no rational reconstruction of "
                                    << f
                                    << " modulo "
                                    << m
                                    << " with |numerator| < "
                                    << k
                                    << std::endl
                                    << "*** Error *** But "
                                    << num
                                    << " = "
                                    << den
                                    << " * "
                                    << f
                                    << " modulo "
                                    << m
                                    << std::endl;
                            return false;
                        }
                    }
                }
                    // (i)
                if (den < 0) {
                    Integer::negin(num);
                    Integer::negin(den);
                }

                    // std::cerr << "RatRecon End " << num << "/" << den << std::endl;
                return true;
            }
    };
    
    typedef ZRing<float> FloatDomain;
    typedef ZRing<double> DoubleDomain;
    typedef ZRing<Integer> IntegerDomain;
}

#endif