This file is indexed.

/usr/include/recint/rmextra.h is in libgivaro-dev 4.0.2-8ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
/* rmint/arith.h - Arithmetic functions for rmint

Copyright Université Joseph Fourier - Grenoble
Contributors :
    Alexis BREUST (alexis.breust@gmail.com 2014)
    Christophe CHABOT (christophechabotcc@gmail.com 2011)


This software is a computer program whose purpose is to provide an fixed precision arithmetic library.

This software is governed by the CeCILL-B license under French law and
abiding by the rules of distribution of free software.  You can  use, 
modify and/ or redistribute the software under the terms of the CeCILL-B
license as circulated by CEA, CNRS and INRIA at the following URL
"http://www.cecill.info". 

As a counterpart to the access to the source code and  rights to copy, 
modify and redistribute granted by the license, users are provided only
with a limited warranty  and the software's author,  the holder of the
economic rights,  and the successive licensors  have only  limited
liability. 

In this respect, the user's attention is drawn to the risks associated
with loading,  using,  modifying and/or developing or reproducing the
software by the user in light of its specific status of free software, 
that may mean  that it is complicated to manipulate,  and  that  also
therefore means  that it is reserved for developers  and  experienced
professionals having in-depth computer knowledge. Users are therefore
encouraged to load and test the software's suitability as regards their
requirements in conditions enabling the security of their systems and/or 
data to be ensured and,  more generally, to use and operate it in the 
same conditions as regards security. 

The fact that you are presently reading this means that you have had
knowledge of the CeCILL-B license and that you accept its terms.
*/


#ifndef RMINT_COMMON_EXTRA_H
#define RMINT_COMMON_EXTRA_H

// --------------------------------------------------------------
// ----------------------- DEFINITIONS --------------------------

namespace RecInt
{
    // returns true iff b exists such that b^2 = a mod a.p
    template <size_t K, size_t MG> bool is_quadratic_residue(const rmint<K, MG>& a);

    // computes r such that r*r = a mod a.p (if a is not a quadratic residue, r = 0)
    template <size_t K, size_t MG> void square_root(rmint<K, MG>& r, const rmint<K, MG>& a);
}


// --------------------------------------------------------------
// --------------------- Implementation -------------------------

namespace RecInt
{
    // Let a.p be an odd prime
    // returns true iff b exists such that b^2 = a mod a.p
    template <size_t K, size_t MG>
    inline bool is_quadratic_residue(const rmint<K, MG>& a) {
        rmint<K, MG> aa;
        ruint<K> pp(a.p - 1);

        right_shift_1(pp, pp);
        exp(aa, a, pp);

        return (aa == 1);
    }

    // computes r such that r*r = a mod a.p (if a is not a quadratic residue, r = 0)
    template <size_t K, size_t MG>
    inline void square_root(rmint<K, MG>& r, const rmint<K, MG>& a) {
        if (!is_quadratic_residue(a)) {
            // a is not a square
            reset(r);
            return;
        }
        
        ruint<K> temp, pp, t;
        rmint<K, MG> tempmod, ppmod;
        UDItype s(0), tempUDItype(0);

        // Compute t and s such that p - 1 = 2^s * t , where t is odd
        pp = a.p - 1;
        div(pp, tempUDItype, pp, UDItype(2));

        while(tempUDItype == 0) {
            s += 1;
            copy(t, pp);
            div(pp, tempUDItype, pp, UDItype(2));
        }

        if (s == 1) {
            exp(r, a, (a.p + 1)/4);
        } else if (s == 2) {
            exp(tempmod, a, (a.p-1)/4);
            if (tempmod == 1) {
                exp(r, a, (a.p + 3)/8);
            } else {
                exp(ppmod, 4*a, (a.p - 5)/8);
                r = 2*a*ppmod;
            }
        } else if (s==3) {
            rmint<K, MG> S, d, h, z, i;
            exp(S, 2*a, (a.p - 1)/4);
            if (S == 1) {
                do { rand(d); }
                while (is_quadratic_residue(d));
            } else {
                do { rand(d); }
                while (!is_quadratic_residue(d));
            }
            mul(h, d, d);
            h *= 2*a;
            exp(z, h, (a.p - 9)/16);
            mul(i, z, z);
            i *= h;
            r = (i-1)*z*d*a;
        } else {
            rmint<K, MG> d, z, b, y;
            UDItype s1;

            do { rand(d); }
            while (is_quadratic_residue(d));
            exp(z, d, t);
            exp(r, a, (t+1)/2);
            exp(b, a, t);

            do {
                s1 = 0;
                copy(tempmod, b);
                while (tempmod != 1) {
                    mul(tempmod, tempmod, tempmod);
                    s1 += 1;
                }

                if (s1 != 0) {
                    exp(y, z, (UDItype)(1 << (s-s1-1)));
                    r *= y;
                    mul(z, y, y);
                    b *= z;
                    s = s1;
                }
            } while (s1 != 0);
        }
    }
}

#endif