This file is indexed.

/usr/include/recint/rudiv.h is in libgivaro-dev 4.0.2-8ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
/* ruint/arith.h - Arithmetic functions for ruint

Copyright Université Joseph Fourier - Grenoble
Contributors :
    Alexis BREUST (alexis.breust@gmail.com 2014)
	Christophe CHABOT (christophechabotcc@gmail.com 2011)
    Jean-Guillaume DUMAS

Time-stamp: <20 Jun 12 10:28:29 Jean-Guillaume.Dumas@imag.fr>

This software is a computer program whose purpose is to provide an
fixed precision arithmetic library.  

This software is governed by the CeCILL-B license under French law and
abiding by the rules of distribution of free software.  You can  use, 
modify and/ or redistribute the software under the terms of the CeCILL-B
license as circulated by CEA, CNRS and INRIA at the following URL
"http://www.cecill.info". 

As a counterpart to the access to the source code and  rights to copy, 
modify and redistribute granted by the license, users are provided only
with a limited warranty  and the software's author,  the holder of the
economic rights,  and the successive licensors  have only  limited
liability. 

In this respect, the user's attention is drawn to the risks associated
with loading,  using,  modifying and/or developing or reproducing the
software by the user in light of its specific status of free software, 
that may mean  that it is complicated to manipulate,  and  that  also
therefore means  that it is reserved for developers  and  experienced
professionals having in-depth computer knowledge. Users are therefore
encouraged to load and test the software's suitability as regards their
requirements in conditions enabling the security of their systems and/or 
data to be ensured and,  more generally, to use and operate it in the 
same conditions as regards security. 

The fact that you are presently reading this means that you have had
knowledge of the CeCILL-B license and that you accept its terms.
*/


#ifndef RUINT_ARITH_DIV_H
#define RUINT_ARITH_DIV_H

#include "ruruint.h"
#include "rucmp.h"

#include "rushift.h" /* right_shift() */

// --------------------------------------------------------------
// ----------------------- DEFINTIONS ---------------------------

namespace RecInt
{
    template <size_t K> ruint<K>& operator%=(ruint<K>&, const ruint<K>&);
    template <size_t K, typename T> __RECINT_IS_ARITH(T, ruint<K>&) operator%=(ruint<K>&, const T&);
    
    template <size_t K> ruint<K>& operator/=(ruint<K>&, const ruint<K>&);
    template <size_t K, typename T> __RECINT_IS_UNSIGNED(T, ruint<K>&) operator/=(ruint<K>&, const T&);
    template <size_t K, typename T> __RECINT_IS_SIGNED(T, ruint<K>&)   operator/=(ruint<K>&, const T&);

    template <size_t K> ruint<K> operator%(const ruint<K>&, const ruint<K>&);
    template <size_t K, typename T> __RECINT_IS_ARITH(T, ruint<K>) operator%(const ruint<K>&, const T&);

    template <size_t K> ruint<K> operator/(const ruint<K>&, const ruint<K>&);
    template <size_t K, typename T> __RECINT_IS_UNSIGNED(T, ruint<K>) operator/(const ruint<K>&, const T&);
    template <size_t K, typename T> __RECINT_IS_SIGNED(T, ruint<K>)   operator/(const ruint<K>&, const T&);

    // Euclidean division of the 3-ruint integer (a2|a1|a0) by the 2-ruint integer (b1|b0)
    // the 1-ruint quotient is stored in q
    // the 2-ruint remainder is stored in (r1|r0)
    template <size_t K> void div_3_2(ruint<K>& q, ruint<K>& r1, ruint<K>& r0,
                                     const ruint<K>& a2, const ruint<K>& a1, const ruint<K>& a0,
                                     const ruint<K>& b1, const ruint<K>& b0);

    // Euclidean division of the 2-ruint integer (a1|a0) by b
    // q stores the quotient and r the remainder
    template <size_t K> void div_2_1(ruint<K>& q, ruint<K>& r,
                                     const ruint<K>& a1, const ruint<K>& a0,
                                     const ruint<K>& b);

    // computes (q, r) such that a = q*b + r (0 <= r < b)
    template <size_t K> void div(ruint<K>& q, ruint<K>& r, const ruint<K>& a, const ruint<K>& b);
    template <size_t K, typename T> __RECINT_IS_ARITH(T, void) div(ruint<K>& q, T& r, const ruint<K>& a, const T& b);

    // q = floor(a/b)
    template <size_t K> ruint<K>& div_q(ruint<K>& q, const ruint<K>& a, const ruint<K>& b);
    template <size_t K, typename T> __RECINT_IS_ARITH(T, ruint<K>&) div_q(ruint<K>& q, const ruint<K>& a, const T& b);

    // r = a mod b
    template <size_t K> ruint<K>& div_r(ruint<K>& r, const ruint<K>& a, const ruint<K>& b);
    template <size_t K, typename T> __RECINT_IS_ARITH(T, T&) div_r(T& r, const ruint<K>& a, const T& b);
}


// --------------------------------------------------------------
// ------------------------ Operators ---------------------------

namespace RecInt
{
    // Operator %=
    template <size_t K>
    inline ruint<K>& operator%=(ruint<K>& a, const ruint<K>& b) {
        return div_r(a, a, b);
    }
    template <size_t K, typename T>
    inline __RECINT_IS_ARITH(T, ruint<K>&) operator%=(ruint<K>& a, const T& b) {
        T aa;
        div_r(aa, a, b);
        return (a = aa);
    }

    // Operator /=
    template <size_t K>
    inline ruint<K>& operator/=(ruint<K>& a, const ruint<K>& b) {
        return div_q(a, a, b);
    }
    template <size_t K, typename T>
    inline __RECINT_IS_UNSIGNED(T, ruint<K>&) operator/=(ruint<K>& a, const T& b) {
        return div_q(a, a, b);
    }
    template <size_t K, typename T>
    inline __RECINT_IS_SIGNED(T, ruint<K>&) operator/=(ruint<K>& a, const T& b) {
        if (b < 0) {
            div_q(a, a, -b);
            return (a = -a);
        } else return div_q(a, a, b);
    }

    // Operator %
    template <size_t K>
    inline ruint<K> operator%(const ruint<K>& b, const ruint<K>& c) {
        ruint<K> a;
        div_r(a, b, c);
        return a;
    }
    template <size_t K, typename T>
    inline __RECINT_IS_ARITH(T, ruint<K>) operator%(const ruint<K>& b, const T& c) {
        ruint<K> a;
        T aa;
        div_r(aa, b, c);
        return (a = aa);
    }

    // Operator /
    template <size_t K>
    inline ruint<K> operator/(const ruint<K>& b, const ruint<K>& c) {
        ruint<K> a;
        div_q(a, b, c);
        return a;
    }
    template <size_t K, typename T>
    inline __RECINT_IS_UNSIGNED(T, ruint<K>) operator/(const ruint<K>& b, const T& c) {
        ruint<K> a;
        return div_q(a, b, c);
    }
    template <size_t K, typename T>
    inline __RECINT_IS_SIGNED(T, ruint<K>) operator/(const ruint<K>& b, const T& c) {
        ruint<K> a;
        if (c < 0) {
            div_q(a, b, -c);
            return (a = -a);
        } else return div_q(a, b, c);
    }
}


// --------------------------------------------------------------
// ------------------------ Division ---------------------------

namespace RecInt
{
    // Euclidean division of the 3-ruint integer (a2|a1|a0) by the 2-ruint integer (b1|b0)
    // the 1-ruint quotient is stored in q
    // the 2-ruint remainder is stored in (r1|r0)
    template <size_t K>  inline void div_3_2(ruint<K>& q, ruint<K>& r1, ruint<K>& r0,
                        const ruint<K>& a2, const ruint<K>& a1, const ruint<K>& a0,
                        const ruint<K>& b1, const ruint<K>& b0) {
        ruint<K> c, d1, d0;
        bool ret_sub, ret1 = false;

        if (a2 < b1) {
            div_2_1(q, c, a2, a1, b1);
        } else {
            fill_with_1(q);
            add(ret1, c, a1, b1);
        }

        lmul(d1, d0, q, b0);
        sub(ret_sub, r0, a0, d0);
        sub_wc(r1, c, d1, ret_sub);

        if ((ret1 == 0) && (d1 > c || (d1 == c && d0 > a0))) {
        	bool ret;
            sub_1(q);
            add(ret_sub, r0, b0);
            add_wc(ret, r1, b1, ret_sub);

            if (!ret) {
                sub_1(q);
                add(ret_sub, r0, b0);
                add_wc(r1, b1, ret_sub);
            }
        }
    }
    template <>
    inline void div_3_2(ruint<__RECINT_LIMB_SIZE>& q, ruint<__RECINT_LIMB_SIZE>& r1, ruint<__RECINT_LIMB_SIZE>& r0,
                        const ruint<__RECINT_LIMB_SIZE>& a2, const ruint<__RECINT_LIMB_SIZE>& a1, const ruint<__RECINT_LIMB_SIZE>& a0,
                        const ruint<__RECINT_LIMB_SIZE>& b1, const ruint<__RECINT_LIMB_SIZE>& b0) {
        limb c, d1, d0;
        bool ret = false;

        if (a2.Value < b1.Value) {
            udiv_qrnnd(q.Value, c, a2.Value, a1.Value, b1.Value);
        } else {
            q.Value = __RECINT_MINUSONE;
            c = a1.Value + b1.Value;
            if (c < a1.Value)
            ret = true;
        }

        umul_ppmm(d1, d0, q.Value, b0.Value);
        sub_ddmmss(r1.Value, r0.Value, c, a0.Value, d1, d0);

        if (!ret && ((d1 > c) || ((d1 == c) && (d0 > a0.Value)))) {
            q.Value--;
            r0.Value += b0.Value;
            r1.Value += b1.Value;
            if (r0.Value < b0.Value)
            r1.Value++;

            if ((r1.Value > b1.Value) || ((r1.Value == b1.Value) && (r0.Value >= b0.Value))) {
                q.Value--;
                r0.Value += b0.Value;
                r1.Value += b1.Value;
                if (r0.Value<b0.Value)
                r1.Value++;  
            }
        }
    }

    // Euclidean division of the 2-ruint integer (a1|a0) by b
    // q stores the quotient and r the remainder
    template <size_t K>
    inline void div_2_1(ruint<K>& q, ruint<K>& r,
                        const ruint<K>& ah, const ruint<K>& al,
                        const ruint<K>& b) {
        ruint<K> s;
        div_3_2(q.High, s.High, s.Low, ah.High, ah.Low, al.High, b.High, b.Low);
        div_3_2(q.Low, r.High, r.Low, s.High, s.Low, al.Low, b.High, b.Low);
    }
    template <>
    inline void div_2_1(ruint<__RECINT_LIMB_SIZE>& q, ruint<__RECINT_LIMB_SIZE>& r,
                        const ruint<__RECINT_LIMB_SIZE>& ah, const ruint<__RECINT_LIMB_SIZE>& al,
                        const ruint<__RECINT_LIMB_SIZE>& b) {
        udiv_qrnnd(q.Value, r.Value, ah.Value, al.Value, b.Value);
    }

    // computes (q, r) such that a = q*b + r (0 <= r < b)
    template <size_t K, typename T>
    inline __RECINT_IS_ARITH(T, void) div(ruint<K>& q, T& r, const ruint<K>& a, const T& b) {
        if (b == 2) {
            bool z;
            right_shift_1(z, q, a);
            r = (z)? 1: 0;
        } else {
            ruint<K> bb(b), rr;
            div(q, rr, a, bb);
            r = static_cast<T>(rr);
        }
    }

    // computes (q, r) such that a = q*b + r (0 <= r < b)
    template <size_t K>
    inline void div(ruint<K>& q, ruint<K>& r, const ruint<K>& a, const ruint<K>& b) {
        UDItype d;
        ruint<K+1> aa;
        ruint<K> bb;

        normalization(d, b);
        left_shift(aa, a, d);
        left_shift(bb, b, d);
        div_2_1(q, r, aa.High, aa.Low, bb);
        right_shift(r, r, d);
    }

    // computes (q, r) such that a = q*b + r (0 <= r < b)
    // Note: with the correct option (-O), a good compiler should compute a/b and a%b with one call
    struct sdiv { limb quot; limb rem; };
    inline void udiv_qrnd(limb& q, limb& r, const limb& a, const limb& b) {
        sdiv x{a/b, a%b};
        q = x.quot; r = x.rem;
    }
    template <>
    inline void div(ruint<__RECINT_LIMB_SIZE>& q, ruint<__RECINT_LIMB_SIZE>& r, const ruint<__RECINT_LIMB_SIZE>& a, const ruint<__RECINT_LIMB_SIZE>& b) {
        udiv_qrnd(q.Value, r.Value, a.Value, b.Value);
    }

    // q = floor(a/b)
    template <size_t K>
    inline ruint<K>& div_q(ruint<K>& q, const ruint<K>& a, const ruint<K>& b) {
        ruint<K> r;
        div(q, r, a, b);
        return q;
    }
    template <size_t K, typename T>
    inline __RECINT_IS_ARITH(T, ruint<K>&) div_q(ruint<K>& q, const ruint<K>& a, const T& b) {
        ruint<K> r, bb(b);
        div(q, r, a, bb);
        return q;
    }

    // r = a mod b
    template <size_t K>
    inline ruint<K>& div_r(ruint<K>& r, const ruint<K>& a, const ruint<K>& b) {
        ruint<K> q;
    	div(q, r, a, b);
    	return r;
    }
    template <size_t K, typename T>
    inline __RECINT_IS_ARITH(T, T&) div_r(T& r, const ruint<K>& a, const T& b) {
        ruint<K> q;
        div(q, r, a, b);
        return r;
    }
}

#endif