This file is indexed.

/usr/include/recint/rumul.h is in libgivaro-dev 4.0.2-8ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
/* ruint/arith.h - Arithmetic functions for ruint

Copyright Université Joseph Fourier - Grenoble
Contributors :
    Alexis BREUST (alexis.breust@gmail.com 2014)
	Christophe CHABOT (christophechabotcc@gmail.com 2011)
    Jean-Guillaume DUMAS

Time-stamp: <20 Jun 12 10:28:29 Jean-Guillaume.Dumas@imag.fr>

This software is a computer program whose purpose is to provide an fixed precision arithmetic library.

This software is governed by the CeCILL-B license under French law and
abiding by the rules of distribution of free software.  You can  use,
modify and/ or redistribute the software under the terms of the CeCILL-B
license as circulated by CEA, CNRS and INRIA at the following URL
"http://www.cecill.info".

As a counterpart to the access to the source code and  rights to copy,
modify and redistribute granted by the license, users are provided only
with a limited warranty  and the software's author,  the holder of the
economic rights,  and the successive licensors  have only  limited
liability.

In this respect, the user's attention is drawn to the risks associated
with loading,  using,  modifying and/or developing or reproducing the
software by the user in light of its specific status of free software,
that may mean  that it is complicated to manipulate,  and  that  also
therefore means  that it is reserved for developers  and  experienced
professionals having in-depth computer knowledge. Users are therefore
encouraged to load and test the software's suitability as regards their
requirements in conditions enabling the security of their systems and/or
data to be ensured and,  more generally, to use and operate it in the
same conditions as regards security.

The fact that you are presently reading this means that you have had
knowledge of the CeCILL-B license and that you accept its terms.
*/


#ifndef RUINT_ARITH_MUL_H
#define RUINT_ARITH_MUL_H

#include "ruruint.h"
#include "rucmp.h"

// --------------------------------------------------------------
// ----------------------- DEFINTIONS ---------------------------

namespace RecInt
{
    template <size_t K> ruint<K>& operator*=(ruint<K>&, const ruint<K>&);
    template <size_t K, typename T> __RECINT_IS_UNSIGNED(T, ruint<K>&) operator*=(ruint<K>&, const T&);
    template <size_t K, typename T> __RECINT_IS_SIGNED(T, ruint<K>&)   operator*=(ruint<K>&, const T&);

    template <size_t K> ruint<K> operator*(const ruint<K>&, const ruint<K>&);
    template <size_t K, typename T> __RECINT_IS_UNSIGNED(T, ruint<K>) operator*(const ruint<K>&, const T&);
    template <size_t K, typename T> __RECINT_IS_UNSIGNED(T, ruint<K>) operator*(const T&, const ruint<K>&);
    template <size_t K, typename T> __RECINT_IS_SIGNED(T, ruint<K>)   operator*(const ruint<K>&, const T&);
    template <size_t K, typename T> __RECINT_IS_SIGNED(T, ruint<K>)   operator*(const T&, const ruint<K>&);

    // a = (ahal) = b*c with naive method
    template <size_t K> void lmul_naive(ruint<K+1>& a, const ruint<K>& b, const ruint<K>& c);
    template <size_t K> void lmul_naive(ruint<K>& ah, ruint<K>& al, const ruint<K>& b, const ruint<K>& c);

    // a = (ahal) = b*c with Karatsuba method
    template <size_t K> void lmul_kara(ruint<K+1>& a, const ruint<K>& b, const ruint<K>& c);
    template <size_t K> void lmul_kara(ruint<K>& ah, ruint<K>& al, const ruint<K>& b, const ruint<K>& c);

    // Choose between naive and Karatsuba methods according to __RECINT_THRESHOLD_KARA constant
    // a = (ahal) = b*c
    template <size_t K> void lmul(ruint<K+1>& a, const ruint<K>& b, const ruint<K>& c);
    template <size_t K> void lmul(ruint<K>& ah, ruint<K>& al, const ruint<K>& b, const ruint<K>& c);
    template <size_t K, typename T> __RECINT_IS_ARITH(T, void) lmul(ruint<K+1>& a, const ruint<K>& b, const T& c);
    template <size_t K, typename T> __RECINT_IS_ARITH(T, void) lmul(limb& ah, ruint<K>& al, const ruint<K>& b, const T& c);

    // a = (b*c).Low    or a = (a*c).Low
    // The higher part is lost
    template <size_t K> ruint<K>& mul(ruint<K>& a, const ruint<K>& b, const ruint<K>& c);
    template <size_t K> ruint<K>& mul(ruint<K>& a, const ruint<K>& c);
    template <size_t K, typename T> __RECINT_IS_ARITH(T, ruint<K>&) mul(ruint<K>& a, const ruint<K>& b, const T& c);
    template <size_t K, typename T> __RECINT_IS_ARITH(T, ruint<K>&) mul(ruint<K>& a, const T& c);

    // a = b*b
    template <size_t K> ruint<K+1>& lsquare(ruint<K+1>& a, const ruint<K>& b);
    template <size_t K> ruint<K>& square(ruint<K>& al, const ruint<K>& b);
}


// --------------------------------------------------------------
// ------------------------ Operators ---------------------------

namespace RecInt
{
    // Operator *=
    template <size_t K>
    inline ruint<K>& operator*=(ruint<K>& a, const ruint<K>& b) {
        return mul(a, b);
    }
    template <size_t K, typename T>
    inline __RECINT_IS_UNSIGNED(T, ruint<K>&) operator*=(ruint<K>& a, const T& b) {
        return mul(a, b);
    }
    template <size_t K, typename T>
    inline __RECINT_IS_SIGNED(T, ruint<K>&) operator*=(ruint<K>& a, const T& b) {
        if (b < 0) {
            mul(a, -b);
            return (a = -a);
        } else return mul(a, b);
    }

    // Operator *
    template <size_t K>
    inline ruint<K> operator*(const ruint<K>& b, const ruint<K>& c) {
        ruint<K> a;
        return mul(a, b, c);
    }
    template <size_t K, typename T>
    inline __RECINT_IS_UNSIGNED(T, ruint<K>) operator*(const ruint<K>& b, const T& c) {
        ruint<K> a;
        return mul(a, b, c);
    }
    template <size_t K, typename T>
    inline __RECINT_IS_UNSIGNED(T, ruint<K>) operator*(const T& c, const ruint<K>& b) {
        ruint<K> a;
        return mul(a, b, c);
    }
    template <size_t K, typename T>
    inline __RECINT_IS_SIGNED(T, ruint<K>) operator*(const ruint<K>& b, const T& c) {
        ruint<K> a;
        if (c < 0) return -mul(a, b, -c);
        else return mul(a, b, c);
    }
    template <size_t K, typename T>
    inline __RECINT_IS_SIGNED(T, ruint<K>) operator*(const T& c, const ruint<K>& b) {
        ruint<K> a;
        if (c < 0) return -mul(a, b, -c);
        else return mul(a, b, c);
    }
}


// --------------------------------------------------------------
// --------------------- Multiplication -------------------------

namespace RecInt
{
    // a = ahal = b*c   with naive method
    // Note: this function is safe, ah|al is correctly computed
    // even if b, c are really ah or al

  template <size_t K>
    inline void lmul_naive(ruint<K>& ah, ruint<K>& al, const ruint<K>& b, const ruint<K>& c) {
        bool rmid, rlow;
        ruint<K> bcmid, blcl;
	
        // Low part
        lmul_naive(blcl, b.Low, c.Low);

        // Middle part
        lmul_naive(bcmid, b.High, c.Low);
        laddmul(rmid, bcmid, b.Low, c.High, bcmid);

        // High part
        laddmul(ah, b.High, c.High, bcmid.High);

        // Below, we do not need b, c, d anymore, go fill ah|al no problem
        copy(al.Low, blcl.Low);
        add(rlow, al.High, blcl.High, bcmid.Low);

        if (rlow)  add_1(ah);
        if (rmid)  add_1(rmid, ah.High);
    }
  
    template<>
    inline void lmul_naive(ruint<__RECINT_LIMB_SIZE>& ah, ruint<__RECINT_LIMB_SIZE>& al, const ruint<__RECINT_LIMB_SIZE>& b, const ruint<__RECINT_LIMB_SIZE>& c) {
        umul_ppmm(ah.Value, al.Value, b.Value, c.Value);
    }
    template <size_t K>
    inline void lmul_naive(ruint<K+1>& a, const ruint<K>& b, const ruint<K>& c) {
        lmul_naive(a.High, a.Low, b, c);
    }

    // a = ahal = b*c   with Karatsuba method
    // Note: FIXME NOT safe - if al or ah is the variable than b or c, then pb
    template <size_t K>
    inline void lmul_kara(ruint<K>& ah, ruint<K>& al, const ruint<K>& b, const ruint<K>& c) {
        ruint<K-1> bb, cc;
        ruint<K> bc;
        bool rb, rc, r, rt1 = false, rt2 = false, rt3, rt4, rt5, rt6;

        add(rb, bb, b.High, b.Low);
        add(rc, cc, c.High, c.Low);
        lmul(ah, b.High, c.High);
        lmul(al, b.Low, c.Low);
        lmul(bc, bb, cc);

        if (rb) add(rt1, bc.High, cc);
        if (rc) add(rt2, bc.High, bb);

        sub(rt3, bc, ah);
        sub(rt4, bc, al);
        r = (rb&rc)+rt1+rt2-rt3-rt4;
        add(rt5, al.High, bc.Low);
        if (rt5) add_1(ah);
        add(rt6, ah.Low, bc.High);
        if (rt6 || r) add(ah.High, rt6 + r);
    }
    template<>
    inline void lmul_kara(ruint<__RECINT_LIMB_SIZE>& ah, ruint<__RECINT_LIMB_SIZE>& al, const ruint<__RECINT_LIMB_SIZE>& b, const ruint<__RECINT_LIMB_SIZE>& c) {
        lmul_naive(ah, al, b, c);
    }
    template <size_t K>
    inline void lmul_kara(ruint<K+1>& a, const ruint<K>& b, const ruint<K>& c) {
        lmul_kara(a.High, a.Low, b, c);
    }

    // Choose between naive and Karatsuba methods according to __RECINT_THRESHOLD_KARA constant
    // a = ahal = b*c
    template <size_t K>
    inline void lmul(ruint<K>& ah, ruint<K>& al, const ruint<K>& b, const ruint<K>& c) {
        if (K < __RECINT_THRESHOLD_KARA) lmul_naive(ah, al, b, c);
        else lmul_kara(ah, al, b, c);
    }
    template<>
    inline void lmul(ruint<__RECINT_LIMB_SIZE>& ah, ruint<__RECINT_LIMB_SIZE>& al, const ruint<__RECINT_LIMB_SIZE>& b, const ruint<__RECINT_LIMB_SIZE>& c) {
        lmul_naive(ah, al, b, c);
    }
    template <size_t K>
    inline void lmul(ruint<K+1>& a, const ruint<K>& b, const ruint<K>& c) {
        lmul(a.High, a.Low, b, c);
    }

    // ret|a = b*c
    template <size_t K, typename T>
    inline __RECINT_IS_ARITH(T, void) lmul(limb& ret, ruint<K>& a, const ruint<K>& b, const T& c) {
        limb retl;
        bool ret_temp;
        lmul(retl, a.Low, b.Low, c);
        lmul(ret, a.High, b.High, c);
        add(ret_temp, a.High, retl);
        ret += ret_temp;
    }
    template<typename T>
    inline __RECINT_IS_ARITH(T, void) lmul(limb& ret, ruint<__RECINT_LIMB_SIZE>& a, const ruint<__RECINT_LIMB_SIZE>& b, const T& c) {
        umul_ppmm(ret, a.Value, b.Value, limb(c));
    }

    // a = b*c
    template <size_t K, typename T>
    inline __RECINT_IS_ARITH(T, void) lmul(ruint<K+1>& a, const ruint<K>& b, const T& c) {
        limb ret;
        lmul(ret, a.Low, b, c);
        a.High = ret;
    }

    // al = (b*c).Low
    // The higher part is lost
    // Note: this function is safe, al is correctly computed
    // even if b, c are really al
    template <size_t K>
    inline ruint<K>& mul(ruint<K>& al, const ruint<K>& b, const ruint<K>& c) {
        ruint<K-1> bcmid;
        mul(bcmid, b.Low, c.High);
        addmul(bcmid, b.High, c.Low);
        lmul(al, b.Low, c.Low);
        add(al.High, bcmid);
        return al;
    }
#if defined(__RECINT_USE_FAST_128)
    template<>
    inline ruint<__RECINT_LIMB_SIZE+1>& mul(ruint<__RECINT_LIMB_SIZE+1>& al, const ruint<__RECINT_LIMB_SIZE+1>& b, const ruint<__RECINT_LIMB_SIZE+1>& c) {
        al.Value = b.Value * c.Value;
        return al;
    }
#endif
    template<>
    inline ruint<__RECINT_LIMB_SIZE>& mul(ruint<__RECINT_LIMB_SIZE>& al, const ruint<__RECINT_LIMB_SIZE>& b, const ruint<__RECINT_LIMB_SIZE>& c) {
        al.Value = b.Value * c.Value;
        return al;
    }

    // al = (al*c).Low
    // The higher part is lost
    // Note: this function is safe, al is correctly computed
    // even if c is really al
    template <size_t K>
    inline ruint<K>& mul(ruint<K>& al, const ruint<K>& c) {
        ruint<K-1> acmid;
        mul(acmid, al.Low, c.High);
        addmul(acmid, al.High, c.Low);
        lmul(al, al.Low, c.Low);
        add(al.High, acmid);
        return al;
    }
#if defined(__RECINT_USE_FAST_128)
    template<>
    inline ruint<__RECINT_LIMB_SIZE+1>& mul(ruint<__RECINT_LIMB_SIZE+1>& al, const ruint<__RECINT_LIMB_SIZE+1>& c) {
        al.Value *= c.Value;
        return al;
    }
#endif
    template<>
    inline ruint<__RECINT_LIMB_SIZE>& mul(ruint<__RECINT_LIMB_SIZE>& al, const ruint<__RECINT_LIMB_SIZE>& c) {
        al.Value *= c.Value;
        return al;
    }

    // a = (b*c).Low
    template <size_t K, typename T>
    inline __RECINT_IS_ARITH(T, ruint<K>&) mul(ruint<K>& a, const ruint<K>& b, const T& c) {
        limb ret;
        lmul(ret, a, b, c);
        return a;
    }

    // a = (a*b).Low
    template <size_t K, typename T>
    inline __RECINT_IS_ARITH(T, ruint<K>&) mul(ruint<K>& a, const T& b) {
        limb ret;
        lmul(ret, a, a, b);
        return a;
    }
}


// --------------------------------------------------------------
// -------------------------- Square -----------------------------

namespace RecInt
{
    // a = b*b
    template <size_t K>
    inline ruint<K+1>& lsquare(ruint<K+1>& a, const ruint<K>& b) {
        bool rbb, ralb, rbah;
        ruint<K> bhbl;

        // a = bh*bh*B*B + 2*B*bh*bl + bl*bl
        lmul(bhbl, b.High, b.Low);
        lsquare(a.High, b.High);
        lsquare(a.Low, b.Low);

        rbb = highest_bit(bhbl);
        left_shift_1(bhbl, bhbl);

        add(ralb, a.Low.High, bhbl.Low);
        add(rbah, a.High.Low, bhbl.High);

        if (ralb) add_1(a.High);
        if (rbah || rbb) add(a.High.High, rbah + rbb);
        return a;
    }
    template<>
    inline ruint<__RECINT_LIMB_SIZE+1>& lsquare(ruint<__RECINT_LIMB_SIZE+1>& a, const ruint<__RECINT_LIMB_SIZE>& b) {
        umul_ppmm(a.High.Value, a.Low.Value, b.Value, b.Value);
        return a;
    }

    // <>|al = b*b
    template <size_t K>
    inline ruint<K>& square(ruint<K>& al, const ruint<K>& b) {
        ruint<K-1> bhbll;

        // al = (2*bh*bl).Low * B + bl*bl
        mul(bhbll, b.High, b.Low);
        lsquare(al, b.Low);

        left_shift_1(bhbll, bhbll);
        add(al.High, bhbll);

        return al;
    }
    template<>
    inline ruint<__RECINT_LIMB_SIZE>& square(ruint<__RECINT_LIMB_SIZE>& al, const ruint<__RECINT_LIMB_SIZE>& b) {
        al.Value = b.Value * b.Value;
        return al;
    }
}

#endif