/usr/include/gmsh/MElementCut.h is in libgmsh-dev 3.0.6+dfsg1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 | // Gmsh - Copyright (C) 1997-2017 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to the public mailing list <gmsh@onelab.info>.
//
// Contributor(s):
// Gaetan Bricteux
#ifndef _MELEMENTCUT_H_
#define _MELEMENTCUT_H_
#include "GmshMessage.h"
#include "MElement.h"
#include "MTetrahedron.h"
#include "MTriangle.h"
#include "MLine.h"
class gLevelset;
class GModel;
class MPolyhedron : public MElement {
protected:
bool _owner;
MElement* _orig;
IntPt *_intpt;
std::vector<MTetrahedron*> _parts;
std::vector<MVertex*> _vertices;
std::vector<MVertex*> _innerVertices;
std::vector<MEdge> _edges;
std::vector<MFace> _faces;
void _init();
public:
MPolyhedron(std::vector<MVertex*> v, int num = 0, int part = 0,
bool owner = false, MElement* orig = NULL)
: MElement(num, part), _owner(owner), _orig(orig), _intpt(0)
{
if(v.size() % 4){
Msg::Error("Got %d vertices for polyhedron", (int)v.size());
return;
}
for(unsigned int i = 0; i < v.size(); i += 4)
_parts.push_back(new MTetrahedron(v[i], v[i + 1], v[i + 2], v[i + 3]));
_init();
}
MPolyhedron(std::vector<MTetrahedron*> vT, int num = 0, int part = 0,
bool owner = false, MElement* orig = NULL)
: MElement(num, part), _owner(owner), _orig(orig), _intpt(0)
{
for(unsigned int i = 0; i < vT.size(); i++)
_parts.push_back(vT[i]);
_init();
}
~MPolyhedron()
{
if(_owner)
delete _orig;
for(unsigned int i = 0; i < _parts.size(); i++)
delete _parts[i];
if(_intpt) delete [] _intpt;
}
virtual int getDim() const { return 3; }
virtual int getNumVertices() const { return _vertices.size() + _innerVertices.size(); }
virtual int getNumVolumeVertices() const { return _innerVertices.size(); }
virtual MVertex *getVertex(int num)
{
return (num < (int)_vertices.size()) ?
_vertices[num] : _innerVertices[num - _vertices.size()];
}
virtual const MVertex *getVertex(int num) const
{
return (num < (int)_vertices.size()) ? _vertices[num] : _innerVertices[num - _vertices.size()];
}
virtual int getNumEdges()const { return _edges.size(); }
virtual MEdge getEdge(int num) const{ return _edges[num]; }
virtual int getNumEdgesRep(bool curved) { return _edges.size(); }
virtual void getEdgeRep(bool curved, int num, double *x, double *y, double *z, SVector3 *n)
{
MEdge e(getEdge(num));
for(unsigned int i = 0; i < _faces.size(); i++)
for(int j = 0; j < 3; j++)
if(_faces[i].getEdge(j) == e)
_getEdgeRep(e.getVertex(0), e.getVertex(1), x, y, z, n, i);
}
virtual void getEdgeVertices(const int num, std::vector<MVertex*> &v) const
{
v.resize(2);
v[0] = _edges[num].getVertex(0);
v[1] = _edges[num].getVertex(1);
}
virtual int getNumFaces() { return _faces.size(); }
virtual MFace getFace(int num) { return _faces[num]; }
virtual int getNumFacesRep(bool curved) { return _faces.size(); }
virtual void getFaceRep(bool curved, int num, double *x, double *y, double *z, SVector3 *n)
{
_getFaceRep(_faces[num].getVertex(0), _faces[num].getVertex(1),
_faces[num].getVertex(2), x, y, z, n);
}
virtual void getFaceVertices(const int num, std::vector<MVertex*> &v) const
{
v.resize(3);
v[0] = _faces[num].getVertex(0);
v[1] = _faces[num].getVertex(1);
v[2] = _faces[num].getVertex(2);
}
virtual int getType() const { return TYPE_POLYH; }
virtual int getTypeForMSH() const { return MSH_POLYH_; }
virtual void reverse()
{
for(unsigned int i = 0; i < _parts.size(); i++)
_parts[i]->reverse();
_vertices.clear();
_innerVertices.clear();
_edges.clear();
_faces.clear();
_init();
}
virtual double getVolume()
{
double vol = 0;
for(unsigned int i = 0; i < _parts.size(); i++)
vol += _parts[i]->getVolume();
return vol;
}
virtual const nodalBasis* getFunctionSpace(int order=-1, bool serendip=false) const
{
return (_orig ? _orig->getFunctionSpace(order, serendip) : 0);
}
virtual const JacobianBasis* getJacobianFuncSpace(int order=-1) const
{
return (_orig ? _orig->getJacobianFuncSpace(order) : 0);
}
virtual void getShapeFunctions(double u, double v, double w, double s[], int o) const
{
if(_orig) _orig->getShapeFunctions(u, v, w, s, o);
}
virtual void getGradShapeFunctions(double u, double v, double w, double s[][3], int o) const
{
if(_orig) _orig->getGradShapeFunctions(u, v, w, s, o);
}
virtual void getHessShapeFunctions(double u, double v, double w, double s[][3][3], int o) const
{
if(_orig) _orig->getHessShapeFunctions(u, v, w, s, o);
}
virtual int getNumShapeFunctions() const
{
return (_orig ? _orig->getNumShapeFunctions() : 0);
}
virtual int getNumPrimaryShapeFunctions() const
{
return (_orig ? _orig->getNumPrimaryShapeFunctions() : 0);
}
virtual const MVertex *getShapeFunctionNode(int i) const
{
return (_orig ? _orig->getShapeFunctionNode(i) : 0);
}
virtual MVertex *getShapeFunctionNode(int i)
{
return (_orig ? _orig->getShapeFunctionNode(i) : 0);
}
// the parametric coordinates of the polyhedron are
// the coordinates in the local parent element.
virtual bool isInside(double u, double v, double w) const;
virtual void getIntegrationPoints(int pOrder, int *npts, IntPt **pts);
virtual MElement *getParent() const { return _orig; }
virtual void setParent(MElement *p, bool owner = false) { _orig = p; _owner = owner; }
virtual int getNumChildren() const { return _parts.size(); }
virtual MElement *getChild(int i) const { return _parts[i]; }
virtual bool ownsParent() const { return _owner; }
virtual int getNumVerticesForMSH() {return _parts.size() * 4;}
virtual void getVerticesIdForMSH(std::vector<int> &verts)
{
int n = getNumVerticesForMSH();
verts.resize(n);
for(unsigned int i = 0; i < _parts.size(); i++)
for(int j = 0; j < 4; j++)
verts[i * 4 + j] = _parts[i]->getVertex(j)->getIndex();
}
};
class MPolygon : public MElement {
protected:
bool _owner;
MElement* _orig;
IntPt *_intpt;
std::vector<MTriangle*> _parts;
std::vector<MVertex*> _vertices;
std::vector<MVertex*> _innerVertices;
std::vector<MEdge> _edges;
void _initVertices();
public:
MPolygon(std::vector<MVertex*> v, int num = 0, int part = 0,
bool owner = false, MElement* orig = NULL)
: MElement(num, part), _owner(owner), _orig(orig), _intpt(0)
{
for(unsigned int i = 0; i < v.size() / 3; i++)
_parts.push_back(new MTriangle(v[i * 3], v[i * 3 + 1], v[i * 3 + 2]));
_initVertices();
}
MPolygon(std::vector<MTriangle*> vT, int num = 0, int part = 0,
bool owner = false, MElement* orig = NULL)
: MElement(num, part), _owner(owner), _orig(orig), _intpt(0)
{
for(unsigned int i = 0; i < vT.size(); i++){
MTriangle *t = (MTriangle*) vT[i];
_parts.push_back(t);
}
_initVertices();
}
~MPolygon()
{
if(_owner)
delete _orig;
for(unsigned int i = 0; i < _parts.size(); i++)
delete _parts[i];
if(_intpt) delete [] _intpt;
}
virtual int getDim() const { return 2; }
virtual int getNumVertices() const { return _vertices.size() + _innerVertices.size(); }
virtual int getNumFaceVertices() const { return _innerVertices.size(); }
virtual MVertex *getVertex(int num)
{
return (num < (int)_vertices.size()) ?
_vertices[num] : _innerVertices[num - _vertices.size()];
}
virtual const MVertex *getVertex(int num) const
{
return (num < (int)_vertices.size()) ? _vertices[num] : _innerVertices[num - _vertices.size()];
}
virtual int getNumEdges()const { return _edges.size(); }
virtual MEdge getEdge(int num) const{ return _edges[num]; }
virtual int getNumEdgesRep(bool curved) { return getNumEdges(); }
virtual void getEdgeRep(bool curved, int num, double *x, double *y, double *z, SVector3 *n)
{
MEdge e(getEdge(num));
_getEdgeRep(e.getVertex(0), e.getVertex(1), x, y, z, n, 0);
}
virtual void getEdgeVertices(const int num, std::vector<MVertex*> &v) const
{
v.resize(2);
v[0] = _edges[num].getVertex(0);
v[1] = _edges[num].getVertex(1);
}
virtual int getNumFaces() { return 1; }
virtual MFace getFace(int num) { return MFace(_vertices); }
virtual int getNumFacesRep(bool curved) { return _parts.size(); }
virtual void getFaceRep(bool curved, int num, double *x, double *y, double *z, SVector3 *n)
{
_getFaceRep(_parts[num]->getVertex(0), _parts[num]->getVertex(1),
_parts[num]->getVertex(2), x, y, z, n);
}
virtual void getFaceVertices(const int num, std::vector<MVertex*> &v) const
{
v.resize(_vertices.size() + _innerVertices.size());
for (unsigned int i = 0; i < _vertices.size() + _innerVertices.size(); i++)
v[i] = (i < _vertices.size()) ? _vertices[i] : _innerVertices[i - _vertices.size()];
}
virtual int getType() const { return TYPE_POLYG; }
virtual int getTypeForMSH() const { return MSH_POLYG_; }
virtual void reverse()
{
for(unsigned int i = 0; i < _parts.size(); i++)
_parts[i]->reverse();
_vertices.clear();
_innerVertices.clear();
_edges.clear();
_initVertices();
}
virtual MElement *getParent() const { return _orig; }
virtual void setParent(MElement *p, bool owner = false) { _orig = p; _owner = owner; }
virtual int getNumChildren() const { return _parts.size(); }
virtual MElement *getChild(int i) const { return _parts[i]; }
virtual bool ownsParent() const { return _owner; }
virtual const nodalBasis* getFunctionSpace(int order=-1, bool serendip=false) const
{
return (_orig ? _orig->getFunctionSpace(order, serendip) : 0);
}
virtual const JacobianBasis* getJacobianFuncSpace(int order=-1) const
{
return (_orig ? _orig->getJacobianFuncSpace(order) : 0);
}
virtual void getShapeFunctions(double u, double v, double w, double s[], int o) const
{
if(_orig) _orig->getShapeFunctions(u, v, w, s, o);
}
virtual void getGradShapeFunctions(double u, double v, double w, double s[][3], int o) const
{
if(_orig) _orig->getGradShapeFunctions(u, v, w, s, o);
}
virtual void getHessShapeFunctions(double u, double v, double w, double s[][3][3], int o) const
{
if(_orig) _orig->getHessShapeFunctions(u, v, w, s, o);
}
virtual int getNumShapeFunctions() const
{
return (_orig ? _orig->getNumShapeFunctions() : 0);
}
virtual int getNumPrimaryShapeFunctions() const
{
return (_orig ? _orig->getNumPrimaryShapeFunctions() : 0);
}
virtual const MVertex *getShapeFunctionNode(int i) const
{
return (_orig ? _orig->getShapeFunctionNode(i) : 0);
}
virtual MVertex *getShapeFunctionNode(int i)
{
return (_orig ? _orig->getShapeFunctionNode(i) : 0);
}
// the parametric coordinates of the polygon are
// the coordinates in the local parent element.
virtual bool isInside(double u, double v, double w) const;
virtual void getIntegrationPoints(int pOrder, int *npts, IntPt **pts);
virtual int getNumVerticesForMSH() {return _parts.size() * 3;}
virtual void getVerticesIdForMSH(std::vector<int> &verts)
{
int n = getNumVerticesForMSH();
verts.resize(n);
for(unsigned int i = 0; i < _parts.size(); i++)
for(int j = 0; j < 3; j++)
verts[i * 3 + j] = _parts[i]->getVertex(j)->getIndex();
}
};
class MLineChild : public MLine {
protected:
bool _owner;
MElement* _orig;
IntPt *_intpt;
public:
MLineChild(MVertex *v0, MVertex *v1, int num = 0, int part = 0,
bool owner = false, MElement* orig = NULL)
: MLine(v0, v1, num, part), _owner(owner), _orig(orig), _intpt(0) {}
MLineChild(std::vector<MVertex*> v, int num = 0, int part = 0,
bool owner = false, MElement* orig = NULL)
: MLine(v, num, part), _owner(owner), _orig(orig), _intpt(0) {}
~MLineChild()
{
if(_owner)
delete _orig;
}
virtual int getTypeForMSH() const { return MSH_LIN_C; }
virtual const nodalBasis* getFunctionSpace(int order=-1, bool serendip=false) const
{
if(_orig) return _orig->getFunctionSpace(order, serendip);
return 0;
}
virtual const JacobianBasis* getJacobianFuncSpace(int order=-1) const
{
if(_orig) return _orig->getJacobianFuncSpace(order);
return 0;
}
virtual void getShapeFunctions(double u, double v, double w, double s[], int o) const
{
if(_orig) _orig->getShapeFunctions(u, v, w, s, o);
}
virtual void getGradShapeFunctions(double u, double v, double w, double s[][3], int o) const
{
if(_orig) _orig->getGradShapeFunctions(u, v, w, s, o);
}
virtual void getHessShapeFunctions(double u, double v, double w, double s[][3][3], int o) const
{
if(_orig) _orig->getHessShapeFunctions(u, v, w, s, o);
}
// the parametric coordinates of the LineChildren are
// the coordinates in the local parent element.
virtual bool isInside(double u, double v, double w) const;
virtual void getIntegrationPoints(int pOrder, int *npts, IntPt **pts);
virtual MElement *getParent() const { return _orig; }
virtual void setParent(MElement *p, bool owner = false) { _orig = p; _owner = owner; }
virtual bool ownsParent() const { return _owner; }
};
// -------------------- Border classes
class MTriangleBorder : public MTriangle {
protected:
MElement* _domains[2];
IntPt *_intpt;
public:
MTriangleBorder(MVertex *v0, MVertex *v1, MVertex *v2, int num = 0, int part = 0,
MElement* d1 = NULL, MElement* d2 = NULL)
: MTriangle(v0, v1, v2, num, part), _intpt(0)
{
_domains[0] = d1; _domains[1] = d2;
}
MTriangleBorder(std::vector<MVertex*> v, int num = 0, int part = 0,
MElement* d1 = NULL, MElement* d2 = NULL)
: MTriangle(v, num, part), _intpt(0)
{
_domains[0] = d1; _domains[1] = d2;
}
~MTriangleBorder() {}
virtual MElement* getDomain(int i) const { return _domains[i]; }
virtual void setDomain (MElement *d, int i) { _domains[i] = d; }
virtual MElement *getParent() const {
if(_domains[0]) return _domains[0]->getParent();
if(_domains[1]) return _domains[1]->getParent();
return NULL;
}
virtual int getTypeForMSH() const { return MSH_TRI_B; }
virtual bool isInside(double u, double v, double w) const;
// the integration points of the MTriangleBorder are in the parent element space
virtual void getIntegrationPoints(int pOrder, int *npts, IntPt **pts);
};
class MPolygonBorder : public MPolygon {
protected:
MElement* _domains[2];
IntPt *_intpt;
public:
MPolygonBorder(std::vector<MTriangle*> v, int num = 0, int part = 0, bool own = false,
MElement *p = NULL, MElement *d1 = NULL, MElement *d2 = NULL)
: MPolygon(v, num, part, own, p), _intpt(0)
{
_domains[0] = d1; _domains[1] = d2;
}
MPolygonBorder(std::vector<MVertex*> v, int num = 0, int part = 0, bool own = false,
MElement *p = NULL, MElement* d1 = NULL, MElement* d2 = NULL)
: MPolygon(v, num, part, own, p), _intpt(0)
{
_domains[0] = d1; _domains[1] = d2;
}
~MPolygonBorder() {}
virtual MElement* getDomain(int i) const { return _domains[i]; }
virtual void setDomain (MElement *d, int i) { _domains[i] = d; }
virtual MElement *getParent() const {
if(_domains[0]) return _domains[0]->getParent();
if(_domains[1]) return _domains[1]->getParent();
return NULL;
}
virtual int getTypeForMSH() const { return MSH_POLYG_B; }
};
class MLineBorder : public MLine {
protected:
MElement* _domains[2];
IntPt *_intpt;
public:
MLineBorder(MVertex *v0, MVertex *v1, int num = 0, int part = 0,
MElement* d1 = NULL, MElement* d2 = NULL)
: MLine(v0, v1, num, part), _intpt(0)
{
_domains[0] = d1; _domains[1] = d2;
}
MLineBorder(std::vector<MVertex*> v, int num = 0, int part = 0,
MElement* d1 = NULL, MElement* d2 = NULL)
: MLine(v, num, part), _intpt(0)
{
_domains[0] = d1; _domains[1] = d2;
}
~MLineBorder() {}
virtual MElement* getDomain(int i) const { return _domains[i]; }
virtual void setDomain (MElement *d, int i) { _domains[i] = d; }
virtual MElement *getParent() const {
if(_domains[0]) return _domains[0]->getParent();
if(_domains[1]) return _domains[1]->getParent();
return NULL;
}
virtual int getTypeForMSH() const { return MSH_LIN_B; }
virtual bool isInside(double u, double v, double w) const;
// the integration points of the MLineBorder are in the parent element space
virtual void getIntegrationPoints(int pOrder, int *npts, IntPt **pts);
};
// Build a new GModel with elements on each side of the levelset ls.
// New physical and elementary entities are created.
// The physical and elementary numbers of the elements with ls < 0 are
// the physical and elementary number of the elements cut.
// The physical and elementary numbers of the elements with ls > 0 are
// the maximum physical and elementary numbers existing in their dimension + 1.
// The physical and elementary numbers of the elements on the border (ls=0) are
// the levelset tag, unless an entity of the same dimension has already this number,
// knowing that the elements are cut in ascending dimension order (points, lines,
// surfaces and then volumes).
GModel *buildCutMesh(GModel *gm, gLevelset *ls,
std::map<int, std::vector<MElement*> > elements[10],
std::map<int, MVertex*> &vertexMap,
std::map<int, std::map<int, std::string> > physicals[4],
bool cutElem);
#endif
|