/usr/include/gmsh/SVector3.h is in libgmsh-dev 3.0.6+dfsg1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 | // Gmsh - Copyright (C) 1997-2017 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to the public mailing list <gmsh@onelab.info>.
#ifndef _SVECTOR3_H_
#define _SVECTOR3_H_
#include "SPoint3.h"
#include <string>
#include <stdio.h>
#include "GmshMessage.h"
// concrete class for vector of size 3
class SVector3 {
protected:
SPoint3 P;
public:
SVector3():P() {}
// Construct from 2 SPoints, vector from p1 to p2
SVector3(const SPoint3 &p1, const SPoint3 &p2) : P(p2 - p1) {}
// Construct from a single SPoint, vector from origin to p1
SVector3(const SPoint3 &p1) : P(p1) {}
SVector3(double x, double y, double z) : P(x, y, z) {}
SVector3(double v) : P(v, v, v) {}
SVector3(const double *array) : P(array) {}
SVector3(const SVector3& v) : P(v.P) {}
inline double x(void) const { return P.x(); }
inline double y(void) const { return P.y(); }
inline double z(void) const { return P.z(); }
inline double norm() const { return sqrt(P[0] * P[0] + P[1] * P[1] + P[2] * P[2]); }
inline double normSq() const{ return (P[0] * P[0] + P[1] * P[1] + P[2] * P[2]); }
// Beware that " w = v.normalize() " produces the vector
// w = (v.norm(), v.norm(), v.norm()), which is NOT a unit vector!
// Use " w = v.unit() " to affect to "w" the unit vector parallel to "v".
double normalize()
{
double n = norm(); if(n){ P[0] /= n; P[1] /= n; P[2] /= n; }
return n;
}
SVector3 unit() const{ SVector3 y(*this); y.normalize(); return y; }
void negate() { P[0] = -P[0]; P[1] = -P[1]; P[2] = -P[2]; }
// why both [] and (), why not
double &operator[](int i){ return P[i]; }
double operator[](int i) const { return P[i]; }
double &operator()(int i){ return P[i]; }
double operator()(int i) const { return P[i]; }
SVector3 & operator += (const SVector3 &a)
{
P[0] += a[0]; P[1] += a[1]; P[2] += a[2];
return *this;
}
SVector3 & operator -= (const SVector3 &a)
{
P[0] -= a[0]; P[1] -= a[1]; P[2] -= a[2];
return *this;
}
SVector3 & operator *= (const SVector3 &a)
{
P[0] *= a[0]; P[1] *= a[1]; P[2] *= a[2];
return *this;
}
SVector3 & operator *= (const double v)
{
P[0] *= v; P[1] *= v; P[2] *= v;
return *this;
}
SVector3 & operator = (double v)
{
P[0] = v; P[1] = v; P[2] = v;
return *this;
}
SVector3 & operator = (const SVector3& a)
{
P[0] = a[0]; P[1] = a[1]; P[2] = a[2];
return *this;
}
operator double *() { return P; }
void print(std::string name="") const
{
Msg::Info("Vector \'%s\': %f %f %f", name.c_str(), P[0], P[1], P[2]);
}
// Needed to allow the initialization of a SPoint3 from a SPoint3, a distance
// and a direction
SPoint3 point() const{ return P; }
int getMaxValue(double& val) const
{
if ((P[0] >=P[1]) && (P[0]>=P[2])){
val = P[0];
return 0;
}
else if ((P[1] >=P[0]) && (P[1]>=P[2])){
val = P[1];
return 1;
}
else {
val = P[2];
return 2;
}
}
const double* data() const {return P.data();}
double* data() {return P.data();}
void axpy(const double a, const SVector3& y){
for (int i=0; i<3; i++){
P[i] += (a*y[i]);
}
}
};
inline double dot(const SVector3 &a, const SVector3 &b)
{ return a.x() * b.x() + a.y() * b.y() + a.z() * b.z(); }
inline double norm(const SVector3 &v)
{ return sqrt(dot(v, v)); }
inline double normSq(const SVector3 &v)
{ return dot(v, v); }
inline SVector3 crossprod(const SVector3 &a, const SVector3 &b)
{ return SVector3(a.y() * b.z() - b.y() * a.z(),
-(a.x() * b.z() - b.x() * a.z()),
a.x() * b.y() - b.x() * a.y()); }
inline double angle (const SVector3 &a, const SVector3 &b){
double cosTheta = dot(a,b);
double sinTheta = norm(crossprod(a,b));
return atan2 (sinTheta,cosTheta);
}
inline SVector3 operator*(double m,const SVector3 &v)
{ return SVector3(v[0] * m, v[1] * m, v[2] * m); }
inline SVector3 operator*(const SVector3 &v, double m)
{ return SVector3(v[0] * m, v[1] * m, v[2] * m); }
inline SVector3 operator*(const SVector3 &v1, const SVector3 &v2)
{ return SVector3(v1[0] * v2[0], v1[1] * v2[1], v1[2] * v2[2]); }
inline SVector3 operator+(const SVector3 &a,const SVector3 &b)
{ return SVector3(a[0] + b[0], a[1] + b[1], a[2] + b[2]); }
inline SVector3 operator-(const SVector3 &a,const SVector3 &b)
{ return SVector3(a[0] - b[0], a[1] - b[1], a[2] - b[2]); }
inline SVector3 operator-(const SVector3 &a)
{ return SVector3(-a[0], -a[1], -a[2]); }
inline void buildOrthoBasis_naive(SVector3 &dir, SVector3 &dir1, SVector3 &dir2)
{
dir.normalize();
if (dir[1]!=0.0 && dir[2]!=0.0){
dir1 = SVector3(1.0, 0.0, -dir[0]/dir[2]);
dir2 = SVector3 (dir[0]/dir[2], -(dir[0]*dir[0]+dir[2]*dir[2])/(dir[1]*dir[2]), 1.0);
}
else if (dir[0]!=0.0 && dir[2]!=0.0){
dir1 = SVector3(-dir[1]/dir[0], 1.0, 0.0);
dir2 = SVector3(1.0, dir[1]/dir[0], -(dir[1]*dir[1]+dir[0]*dir[0])/(dir[0]*dir[2]));
}
else if (dir[0]!=0.0 && dir[1]!=0.0){
dir1 = SVector3(0.0, -dir[2]/dir[1], 1.0);
dir2 = SVector3(-(dir[1]*dir[1]+dir[2]*dir[2])/(dir[0]*dir[1]), 1.0, dir[2]/dir[1]);
}
else if (dir[0]==0.0 && dir[1]==0.0){
dir1 = SVector3(0.0, 1.0, 0.0);
dir2 = SVector3(1.0, 0.0, 0.0);
}
else if (dir[1]==0.0 && dir[2]==0.0){
dir1 = SVector3(0.0, 1.0, 0.0);
dir2 = SVector3(0.0, 0.0, 1.0);
}
else if (dir[0]==0.0 && dir[2]==0.0){
dir1 = SVector3(1.0, 0.0, 0.0);
dir2 = SVector3(0.0, 0.0, 1.0);
}
else{
Msg::Error("Problem with computing orthoBasis");
}
// printf("XYZ =%g %g %g r=%g dir0 = %g %g %g dir1 = %g %g %g dir2 =%g %g %g\n",
// x,y,z,d, dir[0], dir[1], dir[2], dir1[0], dir1[1], dir1[2], dir2[0], dir2[1], dir2[2] );
// printf("0x1 =%g 1x2=%g 2x1=%g \n", dot(dir, dir1), dot(dir1,dir2), dot(dir2,dir));
dir1.normalize();
dir2.normalize();
}
//given a normal, build tangent and binormal
inline void buildOrthoBasis(SVector3 &normal, SVector3 &tangent, SVector3 &binormal)
{
//pick any Unit-Vector that's not parallel to normal:
normal.normalize();
if (fabs(normal[0]) > fabs(normal[1]) )
tangent = SVector3(0.0, 1.0, 0.0);
else
tangent = SVector3(1.0, 0.0, 0.0);
//build a binormal from tangent and normal:
binormal = crossprod(tangent, normal);
double t1 = binormal.normalize();
//and correct the tangent from the binormal and the normal.
tangent = crossprod(normal, binormal);
double t2 = tangent.normalize();
if (t1 == 0.0 || t2 == 0.0)
buildOrthoBasis_naive(normal, tangent, binormal);
}
//given a normal and guess tangent, build binormal
inline void buildOrthoBasis2(SVector3 &normal, SVector3 &tangent, SVector3 &binormal)
{
normal.normalize();
tangent.normalize();
//build a binormal from tangent and normal:
binormal = crossprod(tangent, normal);
double t1 = binormal.normalize();
//and correct the tangent from the binormal and the normal.
tangent = crossprod(normal, binormal);
double t2 = tangent.normalize();
if (t1 == 0.0 || t2 == 0.0)
buildOrthoBasis_naive(normal, tangent, binormal);
}
#endif
|