/usr/include/gmsh/adaptiveData.h is in libgmsh-dev 3.0.6+dfsg1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 | // Gmsh - Copyright (C) 1997-2017 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to the public mailing list <gmsh@onelab.info>.
#ifndef _ADAPTIVE_DATA_H_
#define _ADAPTIVE_DATA_H_
#include <list>
#include <set>
#include <vector>
#include <cstdlib>
#include <algorithm>
#include <sys/stat.h>
#include <assert.h>
#include <fstream>
#include <stdio.h>
#include <string>
#include <sstream>
#include "fullMatrix.h"
#if defined(WIN32)
typedef unsigned __int8 uint8_t; // Valid for _MSC_VER >= 1300
typedef unsigned __int64 uint64_t;
#define PRIu8 "u"
#define PRIu64 "I64u"
#else
#define __STDC_FORMAT_MACROS
#include <inttypes.h>
#endif
typedef std::vector<int> vectInt;
class PViewData;
class PViewDataList;
class GMSH_PostPlugin;
// For old compilers that do not support yet std::to_string()
template <class T>
std::string ToString(const T& val)
{
std::stringstream stream;
stream << val;
return stream.str();
}
class adaptiveVertex {
public:
float x, y, z; //!< parametric coordinates
double X, Y, Z; //!< cartesian coordinates
double val,valy,valz; //!< maximal three values
double valyx,valyy,valyz;
double valzx,valzy,valzz;
public:
static adaptiveVertex *add(double x, double y, double z,
std::set<adaptiveVertex> &allVertice);
bool operator < (const adaptiveVertex &other) const
{
if(other.x < x) return true;
if(other.x > x) return false;
if(other.y < y) return true;
if(other.y > y) return false;
if(other.z < z) return true;
return false;
}
};
template <class T>
class nodMap {
public:
std::vector<int> mapping;
public:
void cleanMapping()
{
mapping.clear();
}
~nodMap()
{
cleanMapping();
}
int getSize() {return (int) mapping.size();}
};
class adaptivePoint {
public:
bool visible;
adaptiveVertex *p[1];
adaptivePoint *e[1];
static std::list<adaptivePoint*> all;
static std::set<adaptiveVertex> allVertices;
static int numNodes, numEdges;
public:
adaptivePoint(adaptiveVertex *p1)
: visible(false)
{
p[0] = p1;
e[0] = 0;
}
inline double V() const
{
return p[0]->val;
}
inline static void GSF(double u, double v, double w, fullVector<double> &sf)
{
sf(0) = 1;
}
static void create(int maxlevel);
static void recurCreate(adaptivePoint *e, int maxlevel, int level);
static void error(double AVG, double tol);
static void recurError(adaptivePoint *e, double AVG, double tol);
};
class adaptiveLine {
public:
bool visible;
adaptiveVertex *p[2];
adaptiveLine *e[2];
static std::list<adaptiveLine*> all;
static std::set<adaptiveVertex> allVertices;
static int numNodes, numEdges;
public:
adaptiveLine(adaptiveVertex *p1, adaptiveVertex *p2)
: visible(false)
{
p[0] = p1;
p[1] = p2;
e[0] = e[1] = 0;
}
inline double V() const
{
return (p[0]->val + p[1]->val) / 2.;
}
inline static void GSF(double u, double v, double w, fullVector<double> &sf)
{
sf(0) = (1 - u) / 2.;
sf(1) = (1 + u) / 2.;
}
static void create(int maxlevel);
static void recurCreate(adaptiveLine *e, int maxlevel, int level);
static void error(double AVG, double tol);
static void recurError(adaptiveLine *e, double AVG, double tol);
};
class adaptiveTriangle {
public:
bool visible;
adaptiveVertex *p[3];
adaptiveTriangle *e[4];
static std::list<adaptiveTriangle*> all;
static std::set<adaptiveVertex> allVertices;
static int numNodes, numEdges;
public:
adaptiveTriangle(adaptiveVertex *p1, adaptiveVertex *p2, adaptiveVertex *p3)
: visible(false)
{
p[0] = p1;
p[1] = p2;
p[2] = p3;
e[0] = e[1] = e[2] = e[3] = 0;
}
inline double V() const
{
return (p[0]->val + p[1]->val + p[2]->val) / 3.;
}
inline static void GSF(double u, double v, double w, fullVector<double> &sf)
{
sf(0) = 1. - u - v;
sf(1) = u;
sf(2) = v;
}
static void create(int maxlevel);
static void recurCreate(adaptiveTriangle *t, int maxlevel, int level);
static void error(double AVG, double tol);
static void recurError(adaptiveTriangle *t, double AVG, double tol);
};
class adaptiveQuadrangle {
public:
bool visible;
adaptiveVertex *p[4];
adaptiveQuadrangle *e[4];
static std::list<adaptiveQuadrangle*> all;
static std::set<adaptiveVertex> allVertices;
static int numNodes, numEdges;
public:
adaptiveQuadrangle(adaptiveVertex *p1, adaptiveVertex *p2,
adaptiveVertex *p3, adaptiveVertex *p4)
: visible(false)
{
p[0] = p1;
p[1] = p2;
p[2] = p3;
p[3] = p4;
e[0] = e[1] = e[2] = e[3] = 0;
}
inline double V() const
{
return (p[0]->val + p[1]->val + p[2]->val + p[3]->val) / 4.;
}
inline static void GSF(double u, double v, double w, fullVector<double> &sf)
{
sf(0) = 0.25 * (1. - u) * (1. - v);
sf(1) = 0.25 * (1. + u) * (1. - v);
sf(2) = 0.25 * (1. + u) * (1. + v);
sf(3) = 0.25 * (1. - u) * (1. + v);
}
static void create(int maxlevel);
static void recurCreate(adaptiveQuadrangle *q, int maxlevel, int level);
static void error(double AVG, double tol);
static void recurError(adaptiveQuadrangle *q, double AVG, double tol);
};
class adaptivePrism {
public:
bool visible;
adaptiveVertex *p[6];
adaptivePrism *e[8];
static std::list<adaptivePrism*> all;
static std::set<adaptiveVertex> allVertices;
static int numNodes, numEdges;
public:
adaptivePrism(adaptiveVertex *p1, adaptiveVertex *p2, adaptiveVertex *p3,
adaptiveVertex *p4, adaptiveVertex *p5, adaptiveVertex *p6)
: visible(false)
{
p[0] = p1;
p[1] = p2;
p[2] = p3;
p[3] = p4;
p[4] = p5;
p[5] = p6;
e[0] = e[1] = e[2] = e[3] = NULL;
e[4] = e[5] = e[6] = e[7] = NULL;
}
inline double V() const
{
return (p[0]->val + p[1]->val + p[2]->val + p[3]->val + p[4]->val + p[5]->val) / 6.;
}
inline static void GSF(double u, double v, double w, fullVector<double> &sf)
{
sf(0) = (1. - u - v) * (1 - w) / 2;
sf(1) = u * (1-w)/2;
sf(2) = v*(1-w)/2;
sf(3) = (1. - u - v)*(1+w)/2;
sf(4) = u*(1+w)/2;
sf(5) = v*(1+w)/2;
}
static void create(int maxlevel);
static void recurCreate(adaptivePrism *p, int maxlevel, int level);
static void error(double AVG, double tol);
static void recurError(adaptivePrism *p, double AVG, double tol);
};
class adaptiveTetrahedron {
public:
bool visible;
adaptiveVertex *p[4];
adaptiveTetrahedron *e[8];
static std::list<adaptiveTetrahedron*> all;
static std::set<adaptiveVertex> allVertices;
static int numNodes, numEdges;
public:
adaptiveTetrahedron(adaptiveVertex *p1, adaptiveVertex *p2,
adaptiveVertex *p3, adaptiveVertex *p4)
: visible(false)
{
p[0] = p1;
p[1] = p2;
p[2] = p3;
p[3] = p4;
e[0] = e[1] = e[2] = e[3] = 0;
e[4] = e[5] = e[6] = e[7] = 0;
}
inline double V() const
{
return (p[0]->val + p[1]->val + p[2]->val + p[3]->val) / 4.;
}
inline static void GSF(double u, double v, double w, fullVector<double> &sf)
{
sf(0) = 1. - u - v - w;
sf(1) = u;
sf(2) = v;
sf(3) = w;
}
static void create(int maxlevel);
static void recurCreate(adaptiveTetrahedron *t, int maxlevel, int level);
static void error(double AVG, double tol);
static void recurError(adaptiveTetrahedron *t, double AVG, double tol);
};
class adaptiveHexahedron {
public:
bool visible;
adaptiveVertex *p[8];
adaptiveHexahedron *e[8];
static std::list<adaptiveHexahedron*> all;
static std::set<adaptiveVertex> allVertices;
static int numNodes, numEdges;
public:
adaptiveHexahedron(adaptiveVertex *p1, adaptiveVertex *p2, adaptiveVertex *p3,
adaptiveVertex *p4, adaptiveVertex *p5, adaptiveVertex *p6,
adaptiveVertex *p7, adaptiveVertex *p8)
: visible(false)
{
p[0] = p1;
p[1] = p2;
p[2] = p3;
p[3] = p4;
p[4] = p5;
p[5] = p6;
p[6] = p7;
p[7] = p8;
e[0] = e[1] = e[2] = e[3] = 0;
e[4] = e[5] = e[6] = e[7] = 0;
}
inline double V() const
{
return (p[0]->val + p[1]->val + p[2]->val+ p[3]->val +
p[4]->val + p[5]->val + p[6]->val+ p[7]->val) / 8.;
}
inline static void GSF(double u, double v, double w, fullVector<double> &sf)
{
sf(0) = 0.125 * (1 - u) * (1 - v) * (1 - w);
sf(1) = 0.125 * (1 + u) * (1 - v) * (1 - w);
sf(2) = 0.125 * (1 + u) * (1 + v) * (1 - w);
sf(3) = 0.125 * (1 - u) * (1 + v) * (1 - w);
sf(4) = 0.125 * (1 - u) * (1 - v) * (1 + w);
sf(5) = 0.125 * (1 + u) * (1 - v) * (1 + w);
sf(6) = 0.125 * (1 + u) * (1 + v) * (1 + w);
sf(7) = 0.125 * (1 - u) * (1 + v) * (1 + w);
}
static void create(int maxlevel);
static void recurCreate(adaptiveHexahedron *h, int maxlevel, int level);
static void error(double AVG, double tol);
static void recurError(adaptiveHexahedron *h, double AVG, double tol);
};
// modif koen.hillewaert@cenaero.be, 31/07/2014
class adaptivePyramid {
public:
bool visible;
adaptiveVertex *p[5];
adaptivePyramid *e[10];
static std::list<adaptivePyramid*> all;
static std::set<adaptiveVertex> allVertices;
static int numNodes, numEdges;
public:
adaptivePyramid(adaptiveVertex *p1,
adaptiveVertex *p2,
adaptiveVertex *p3,
adaptiveVertex *p4,
adaptiveVertex *p5)
: visible(false)
{
p[0] = p1;
p[1] = p2;
p[2] = p3;
p[3] = p4;
p[4] = p5;
for (int i=0;i<10;i++) e[i] = NULL;
}
inline double V() const
{
return (p[0]->val + p[1]->val + p[2]->val + p[3]->val + p[4]->val) / 5.;
}
// barycentric coordinates ?
inline static void GSF(double u, double v, double w, fullVector<double> &sf)
{
double ww = 0.25 / std::max(1e-14,1.-w);
sf(0) = (1 - u - w) * (1 - v - w) * ww;
sf(1) = (1 + u - w) * (1 - v - w) * ww;
sf(2) = (1 + u - w) * (1 + v - w) * ww;
sf(3) = (1 - u - w) * (1 + v - w) * ww;
sf(4) = w;
}
static void create(int maxlevel);
static void recurCreate(adaptivePyramid *h, int maxlevel, int level);
static void error(double AVG, double tol);
static void recurError(adaptivePyramid *h, double AVG, double tol);
};
class PCoords {
public:
double c[3];
PCoords(double x, double y, double z)
{
c[0] = x; c[1] = y; c[2] = z;
}
};
class PValues{
public:
short int sizev; //acceptable values: 1 (scalar), 3 (vector), 9 (tensor)
double *v;
PValues(const PValues& obj)
{
sizev = obj.sizev;
v = new double[sizev];
for(int i=0;i<sizev;i++) {
v[i] = obj.v[i];
}
}
PValues(int size)
{
sizev = size;
v = new double[sizev];
for(int i=0;i<sizev;i++) {
v[i] = 0.0;
}
}
PValues(double vx)
{
sizev = 1;
v = new double[sizev];
v[0] = vx;
}
PValues(double vx, double vy, double vz)
{
sizev = 3;
v = new double[sizev];
v[0] = vx; v[1] = vy; v[2] = vz;
}
PValues(double vxx, double vxy, double vxz,
double vyx, double vyy, double vyz,
double vzx, double vzy, double vzz)
{
sizev = 9;
v = new double[sizev];
v[0] = vxx; v[1] = vxy; v[2] = vxz;
v[3] = vyx; v[4] = vyy; v[5] = vyz;
v[6] = vzx; v[7] = vzy; v[8] = vzz;
}
~PValues()
{
delete[] v;
}
void operator = (const PValues& obj)
{
// Assume PValues object has already been generated
// and v allocated when the operator = is called
if(sizev != obj.sizev)
Msg::Error("In PValues overlodaing operator: size mistmatch %d %d",sizev);
for(int i=0;i<sizev;i++) {
v[i] = obj.v[i];
}
}
};
class globalVTKData {
public:
static std::vector<vectInt> vtkGlobalConnectivity; // conectivity (vector of vector)
static std::vector<int> vtkGlobalCellType; // topology
static std::vector<PCoords> vtkGlobalCoords; // coordinates
static std::vector<PValues> vtkGlobalValues; // nodal values (either scalar or vector)
globalVTKData();
static void clearGlobalConnectivity()
{
for(std::vector<vectInt>::iterator it = vtkGlobalConnectivity.begin();
it != vtkGlobalConnectivity.end(); ++it) {
it->clear();
}
vtkGlobalConnectivity.clear();
std::vector<vectInt>().swap(vtkGlobalConnectivity);
}
static void clearGlobalCellType()
{
vtkGlobalCellType.clear();
std::vector<int>().swap(vtkGlobalCellType);
}
static void clearGlobalCoords()
{
vtkGlobalCoords.clear();
std::vector<PCoords>().swap(vtkGlobalCoords);
}
static void clearGlobalValues()
{
vtkGlobalValues.clear();
std::vector<PValues>().swap(vtkGlobalValues);
}
static void clearGlobalData()
{
clearGlobalConnectivity();
clearGlobalCellType();
clearGlobalCoords();
clearGlobalValues();
}
~globalVTKData()
{
clearGlobalData();
}
};
class VTKData {
public:
// Data container to write output files readable for ParaView
// vtk legacy and vtu for now
std::string vtkFieldName;
std::string vtkFileName;
std::string vtkFormat;
std::string vtkDirName;
int vtkStep;
int vtkLevel;
int vtkNumComp;
double vtkTol;
int vtkNpart;
bool vtkIsBinary;
int vtkUseDefaultName;
int minElmPerPart, maxElmPerPart, numPartMinElm, numPartMaxElm;
// File variables
FILE *vtkFile;
FILE *vtkFileCoord;
FILE *vtkFileConnect;
FILE *vtkFileCellOffset;
FILE *vtkFileCellType;
FILE *vtkFileNodVal;
int vtkCountFile;
int vtkTotNumElmLev0;
int vtkCountTotElmLev0;
int vtkCountTotNod;
int vtkCountTotElm;
int vtkCountCoord;
int vtkCountTotNodConnect;
int vtkCountTotVal;
int vtkCountCellOffset; //used only for ascii output
int vtkCountCellType; //used only for ascii output
std::vector<vectInt> vtkLocalConnectivity; // conectivity (vector of vector)
std::vector<int> vtkLocalCellType; // topology
std::vector<PCoords> vtkLocalCoords; // coordinates
std::vector<PValues> vtkLocalValues; // nodal values (either scalar or vector)
public:
VTKData(std::string fieldName="unknown", int numComp = -1, int step = -1,
int level = -1, double tol=0.0, std::string filename="unknown",
int useDefaultName = 1, int npart = -1, bool isBinary = true)
{
vtkIsBinary = isBinary; // choice: true, false
vtkFormat = std::string("vtu"); // choice: vtk (VTK legacy), vtu (XML appended)
vtkFieldName = fieldName;
vtkFileName = filename;
vtkUseDefaultName = useDefaultName;
vtkNumComp = numComp;
vtkStep = step;
vtkLevel = level;
vtkTol = tol;
vtkNpart = npart;
vtkCountFile = 0;
vtkTotNumElmLev0 = 0;
vtkCountTotElmLev0 = 0;
vtkCountTotNod = 0;
vtkCountTotElm = 0;
vtkCountCoord = 0;
vtkCountTotNodConnect = 0;
vtkCountTotVal = 0;
vtkCountCellOffset = 0; //used only for ascii output
vtkCountCellType = 0;
}
void clearLocalData()
{
for(std::vector<vectInt>::iterator it = vtkLocalConnectivity.begin();
it != vtkLocalConnectivity.end(); ++it) {
it->clear();
}
vtkLocalConnectivity.clear();
vtkLocalCellType.clear();
vtkLocalCoords.clear();
vtkLocalValues.clear();
}
~VTKData()
{
clearLocalData();
}
void incrementTotNod(int increment) { vtkCountTotNod+=increment; }
void incrementTotElm(int increment) { vtkCountTotElm+=increment; }
void incrementTotElmLev0(int increment) { vtkCountTotElmLev0+=increment; }
bool isLittleEndian();
void SwapArrayByteOrder(void* array, int nbytes, int nItems); // used only for VTK
int getPVCellType(int numEdges);
// void writeParaViewData();
void writeVTKElmData();
void initVTKFile();
void finalizeVTKFile();
void setFileDistribution()
{
int tmpmod = vtkTotNumElmLev0 % vtkNpart;
minElmPerPart = (vtkTotNumElmLev0-tmpmod)/vtkNpart;
numPartMinElm = vtkNpart - tmpmod;
if(tmpmod == 0 ) maxElmPerPart = minElmPerPart;
else maxElmPerPart = minElmPerPart+1;
numPartMaxElm = tmpmod;
assert(vtkTotNumElmLev0 == minElmPerPart*numPartMinElm+maxElmPerPart*numPartMaxElm);
}
};
template <class T>
class adaptiveElements {
private:
fullMatrix<double> *_coeffsVal, *_eexpsVal, *_interpolVal;
fullMatrix<double> *_coeffsGeom, *_eexpsGeom, *_interpolGeom;
public:
adaptiveElements(std::vector<fullMatrix<double>*> &interpolationMatrices);
~adaptiveElements();
// create the _interpolVal and _interpolGeom matrices at the given
// refinement level
void init(int level);
// process the element data in coords/values and return the refined
// elements in coords/values
void adapt(double tol, int numComp,
std::vector<PCoords> &coords, std::vector<PValues> &values,
double &minVal, double &maxVal, GMSH_PostPlugin *plug=0,
bool onlyComputeMinMax=false);
// adapt all the T-type elements in the input view and add the
// refined elements in the output view (we will remove this when we
// switch to true on-the-fly local refinement in drawPost())
void addInView(double tol, int step, PViewData *in, PViewDataList *out,
GMSH_PostPlugin *plug=0);
// Routines for
// - export of adapted views to pvtu file format for parallel visualization
// with paraview,
// - and/or generation of VTK data structure for ParaView plugin.
// Clone of adapt for VTK output files
void adaptForVTK(double tol, int numComp,
std::vector<PCoords> &coords, std::vector<PValues> &values,
double &minVal, double &maxVal);
// Clone of addInView for VTK output files
void addInViewForVTK(int step, PViewData *in, VTKData &myVTKData,
bool writeVtk=true, bool buildStaticData=false);
int countElmLev0(int step, PViewData *in);
// Build a mapping between all the nodes of the refined element
// and the node of the canonical refined element in order to
// generate a connectivity related to the canonical element
void buildMapping(nodMap<T> &myNodMap, double tol, int &numNodInsert);
};
class adaptiveData {
private:
int _step, _level;
double _tol;
PViewData *_inData;
PViewDataList *_outData;
adaptiveElements<adaptivePoint> *_points;
adaptiveElements<adaptiveLine> *_lines;
adaptiveElements<adaptiveTriangle> *_triangles;
adaptiveElements<adaptiveQuadrangle> *_quadrangles;
adaptiveElements<adaptiveTetrahedron> *_tetrahedra;
adaptiveElements<adaptiveHexahedron> *_hexahedra;
adaptiveElements<adaptivePrism> *_prisms;
adaptiveElements<adaptivePyramid> *_pyramids;
// When set to true, this builds a global VTK data structure (connectivity,
// coords, etc) for the adaptive views. This can be very memory consuming for
// high adaptation levels. Use with caution. Useful when GMSH is used as an
// external library to provide for instance a GMSH reader in a ParaView
// plugin. By default, set to false in the constructor.
bool buildStaticData;
// This variable helps limit memory consumption (no global data structure)
// when GMSH is requested to write the data structure of adapted view under
// pvtu format In this case, one adapted element is considered at a time so
// that it can generate billions of adapted elements on a single core, as long
// as disk space allows it. This variable is set to true by default in the
// constructor.
bool writeVTK;
public:
static double timerInit, timerAdapt;
adaptiveData(PViewData *data, bool outDataInit=true);
~adaptiveData();
PViewData *getData(){ return (PViewData*)_outData; }
void changeResolution(int step, int level, double tol, GMSH_PostPlugin *plug=0);
int countTotElmLev0(int step, PViewData *in);
void changeResolutionForVTK(int step, int level, double tol, int npart = 1,
bool isBinary = true,
const std::string &guifileName = "unknown",
int useDefaultName = 1);
void upBuildStaticData(bool newValue) { buildStaticData = newValue; }
void upWriteVTK(bool newValue) { writeVTK = newValue; }
};
#endif
|