This file is indexed.

/usr/include/gmsh/adaptiveData.h is in libgmsh-dev 3.0.6+dfsg1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
// Gmsh - Copyright (C) 1997-2017 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to the public mailing list <gmsh@onelab.info>.

#ifndef _ADAPTIVE_DATA_H_
#define _ADAPTIVE_DATA_H_

#include <list>
#include <set>
#include <vector>
#include <cstdlib>
#include <algorithm>
#include <sys/stat.h>
#include <assert.h>
#include <fstream>
#include <stdio.h>
#include <string>
#include <sstream>
#include "fullMatrix.h"

#if defined(WIN32)
  typedef unsigned __int8 uint8_t; // Valid for _MSC_VER >= 1300
  typedef unsigned __int64 uint64_t;
  #define PRIu8 "u"
  #define PRIu64 "I64u"
#else
  #define __STDC_FORMAT_MACROS
  #include <inttypes.h>
#endif

typedef std::vector<int> vectInt;

class PViewData;
class PViewDataList;
class GMSH_PostPlugin;

// For old compilers that do not support yet std::to_string()
template <class T>
std::string ToString(const T& val)
{
  std::stringstream stream;
  stream << val;
  return stream.str();
}

class adaptiveVertex {
 public:
  float  x, y, z;        //!< parametric coordinates
  double X, Y, Z;        //!< cartesian coordinates
  double val,valy,valz;  //!< maximal three values
  double valyx,valyy,valyz;
  double valzx,valzy,valzz;
 public:
  static adaptiveVertex *add(double x, double y, double z,
                             std::set<adaptiveVertex> &allVertice);
  bool operator < (const adaptiveVertex &other) const
  {
    if(other.x < x) return true;
    if(other.x > x) return false;
    if(other.y < y) return true;
    if(other.y > y) return false;
    if(other.z < z) return true;
    return false;
  }
};

template <class T>
class nodMap {
public:
  std::vector<int> mapping;

public:
  void cleanMapping()
  {
    mapping.clear();
  }
  ~nodMap()
  {
    cleanMapping();
  }
  int getSize() {return (int) mapping.size();}
};

class adaptivePoint {
 public:
  bool visible;
  adaptiveVertex *p[1];
  adaptivePoint *e[1];
  static std::list<adaptivePoint*> all;
  static std::set<adaptiveVertex> allVertices;
  static int numNodes, numEdges;
 public:
  adaptivePoint(adaptiveVertex *p1)
    : visible(false)
  {
    p[0] = p1;
    e[0] = 0;
  }
  inline double V() const
  {
    return p[0]->val;
  }
  inline static void GSF(double u, double v, double w, fullVector<double> &sf)
  {
    sf(0) = 1;
  }
  static void create(int maxlevel);
  static void recurCreate(adaptivePoint *e, int maxlevel, int level);
  static void error(double AVG, double tol);
  static void recurError(adaptivePoint *e, double AVG, double tol);
};

class adaptiveLine {
 public:
  bool visible;
  adaptiveVertex *p[2];
  adaptiveLine *e[2];
  static std::list<adaptiveLine*> all;
  static std::set<adaptiveVertex> allVertices;
  static int numNodes, numEdges;
 public:
  adaptiveLine(adaptiveVertex *p1, adaptiveVertex *p2)
    : visible(false)
  {
    p[0] = p1;
    p[1] = p2;
    e[0] = e[1] = 0;
  }
  inline double V() const
  {
    return (p[0]->val + p[1]->val) / 2.;
  }
  inline static void GSF(double u, double v, double w, fullVector<double> &sf)
  {
    sf(0) = (1 - u) / 2.;
    sf(1) = (1 + u) / 2.;
  }
  static void create(int maxlevel);
  static void recurCreate(adaptiveLine *e, int maxlevel, int level);
  static void error(double AVG, double tol);
  static void recurError(adaptiveLine *e, double AVG, double tol);
};

class adaptiveTriangle {
 public:
  bool visible;
  adaptiveVertex *p[3];
  adaptiveTriangle *e[4];
  static std::list<adaptiveTriangle*> all;
  static std::set<adaptiveVertex> allVertices;
  static int numNodes, numEdges;
 public:
  adaptiveTriangle(adaptiveVertex *p1, adaptiveVertex *p2, adaptiveVertex *p3)
    : visible(false)
  {
    p[0] = p1;
    p[1] = p2;
    p[2] = p3;
    e[0] = e[1] = e[2] = e[3] = 0;
  }
  inline double V() const
  {
    return (p[0]->val + p[1]->val + p[2]->val) / 3.;
  }
  inline static void GSF(double u, double v, double w, fullVector<double> &sf)
  {
    sf(0) = 1. - u - v;
    sf(1) = u;
    sf(2) = v;
  }
  static void create(int maxlevel);
  static void recurCreate(adaptiveTriangle *t, int maxlevel, int level);
  static void error(double AVG, double tol);
  static void recurError(adaptiveTriangle *t, double AVG, double tol);
};

class adaptiveQuadrangle {
 public:
  bool visible;
  adaptiveVertex *p[4];
  adaptiveQuadrangle *e[4];
  static std::list<adaptiveQuadrangle*> all;
  static std::set<adaptiveVertex> allVertices;
  static int numNodes, numEdges;
 public:
  adaptiveQuadrangle(adaptiveVertex *p1, adaptiveVertex *p2,
                     adaptiveVertex *p3, adaptiveVertex *p4)
    : visible(false)
  {
    p[0] = p1;
    p[1] = p2;
    p[2] = p3;
    p[3] = p4;
    e[0] = e[1] = e[2] = e[3] = 0;
  }
  inline double V() const
  {
    return (p[0]->val + p[1]->val + p[2]->val + p[3]->val) / 4.;
  }
  inline static void GSF(double u, double v, double w, fullVector<double> &sf)
  {
    sf(0) = 0.25 * (1. - u) * (1. - v);
    sf(1) = 0.25 * (1. + u) * (1. - v);
    sf(2) = 0.25 * (1. + u) * (1. + v);
    sf(3) = 0.25 * (1. - u) * (1. + v);
  }
  static void create(int maxlevel);
  static void recurCreate(adaptiveQuadrangle *q, int maxlevel, int level);
  static void error(double AVG, double tol);
  static void recurError(adaptiveQuadrangle *q, double AVG, double tol);
};

class adaptivePrism {
 public:
  bool visible;
  adaptiveVertex *p[6];
  adaptivePrism *e[8];
  static std::list<adaptivePrism*> all;
  static std::set<adaptiveVertex> allVertices;
  static int numNodes, numEdges;
 public:
  adaptivePrism(adaptiveVertex *p1, adaptiveVertex *p2, adaptiveVertex *p3,
                adaptiveVertex *p4, adaptiveVertex *p5, adaptiveVertex *p6)
    : visible(false)
  {
    p[0] = p1;
    p[1] = p2;
    p[2] = p3;
    p[3] = p4;
    p[4] = p5;
    p[5] = p6;
    e[0] = e[1] = e[2]  = e[3]  = NULL;
    e[4] = e[5] = e[6]  = e[7]  = NULL;
  }
  inline double V() const
  {
    return (p[0]->val + p[1]->val + p[2]->val + p[3]->val + p[4]->val + p[5]->val) / 6.;
  }
  inline static void GSF(double u, double v, double w, fullVector<double> &sf)
  {
    sf(0) = (1. - u - v) * (1 - w) / 2;
    sf(1) = u * (1-w)/2;
    sf(2) = v*(1-w)/2;
    sf(3) = (1. - u - v)*(1+w)/2;
    sf(4) = u*(1+w)/2;
    sf(5) = v*(1+w)/2;
  }
  static void create(int maxlevel);
  static void recurCreate(adaptivePrism *p, int maxlevel, int level);
  static void error(double AVG, double tol);
  static void recurError(adaptivePrism *p, double AVG, double tol);
};

class adaptiveTetrahedron {
 public:
  bool visible;
  adaptiveVertex *p[4];
  adaptiveTetrahedron *e[8];
  static std::list<adaptiveTetrahedron*> all;
  static std::set<adaptiveVertex> allVertices;
  static int numNodes, numEdges;
 public:
  adaptiveTetrahedron(adaptiveVertex *p1, adaptiveVertex *p2,
                      adaptiveVertex *p3, adaptiveVertex *p4)
    : visible(false)
  {
    p[0] = p1;
    p[1] = p2;
    p[2] = p3;
    p[3] = p4;
    e[0] = e[1] = e[2] = e[3] = 0;
    e[4] = e[5] = e[6] = e[7] = 0;
  }
  inline double V() const
  {
    return (p[0]->val + p[1]->val + p[2]->val + p[3]->val) / 4.;
  }
  inline static void GSF(double u, double v, double w, fullVector<double> &sf)
  {
    sf(0) = 1. - u - v - w;
    sf(1) = u;
    sf(2) = v;
    sf(3) = w;
  }
  static void create(int maxlevel);
  static void recurCreate(adaptiveTetrahedron *t, int maxlevel, int level);
  static void error(double AVG, double tol);
  static void recurError(adaptiveTetrahedron *t, double AVG, double tol);
};

class adaptiveHexahedron {
 public:
  bool visible;
  adaptiveVertex *p[8];
  adaptiveHexahedron *e[8];
  static std::list<adaptiveHexahedron*> all;
  static std::set<adaptiveVertex> allVertices;
  static int numNodes, numEdges;
 public:
  adaptiveHexahedron(adaptiveVertex *p1, adaptiveVertex *p2, adaptiveVertex *p3,
                     adaptiveVertex *p4, adaptiveVertex *p5, adaptiveVertex *p6,
                     adaptiveVertex *p7, adaptiveVertex *p8)
    : visible(false)
  {
    p[0] = p1;
    p[1] = p2;
    p[2] = p3;
    p[3] = p4;
    p[4] = p5;
    p[5] = p6;
    p[6] = p7;
    p[7] = p8;
    e[0] = e[1] = e[2] = e[3] = 0;
    e[4] = e[5] = e[6] = e[7] = 0;
  }
  inline double V() const
  {
    return (p[0]->val + p[1]->val + p[2]->val+ p[3]->val +
            p[4]->val + p[5]->val + p[6]->val+ p[7]->val) / 8.;
  }
  inline static void GSF(double u, double v, double w, fullVector<double> &sf)
  {
    sf(0) = 0.125 * (1 - u) * (1 - v) * (1 - w);
    sf(1) = 0.125 * (1 + u) * (1 - v) * (1 - w);
    sf(2) = 0.125 * (1 + u) * (1 + v) * (1 - w);
    sf(3) = 0.125 * (1 - u) * (1 + v) * (1 - w);
    sf(4) = 0.125 * (1 - u) * (1 - v) * (1 + w);
    sf(5) = 0.125 * (1 + u) * (1 - v) * (1 + w);
    sf(6) = 0.125 * (1 + u) * (1 + v) * (1 + w);
    sf(7) = 0.125 * (1 - u) * (1 + v) * (1 + w);
  }
  static void create(int maxlevel);
  static void recurCreate(adaptiveHexahedron *h, int maxlevel, int level);
  static void error(double AVG, double tol);
  static void recurError(adaptiveHexahedron *h, double AVG, double tol);
};

// modif koen.hillewaert@cenaero.be, 31/07/2014

class adaptivePyramid {
 public:
  bool visible;
  adaptiveVertex *p[5];
  adaptivePyramid *e[10];
  static std::list<adaptivePyramid*> all;
  static std::set<adaptiveVertex> allVertices;
  static int numNodes, numEdges;
 public:
  adaptivePyramid(adaptiveVertex *p1,
                  adaptiveVertex *p2,
                  adaptiveVertex *p3,
                  adaptiveVertex *p4,
                  adaptiveVertex *p5)
    : visible(false)
  {
    p[0] = p1;
    p[1] = p2;
    p[2] = p3;
    p[3] = p4;
    p[4] = p5;
    for (int i=0;i<10;i++) e[i] = NULL;
  }
  inline double V() const
  {
    return (p[0]->val + p[1]->val + p[2]->val + p[3]->val + p[4]->val) / 5.;
  }
  // barycentric coordinates ?
  inline static void GSF(double u, double v, double w, fullVector<double> &sf)
  {
    double ww = 0.25 / std::max(1e-14,1.-w);
    sf(0) = (1 - u - w) * (1 - v - w) * ww;
    sf(1) = (1 + u - w) * (1 - v - w) * ww;
    sf(2) = (1 + u - w) * (1 + v - w) * ww;
    sf(3) = (1 - u - w) * (1 + v - w) * ww;
    sf(4) = w;
  }
  static void create(int maxlevel);
  static void recurCreate(adaptivePyramid *h, int maxlevel, int level);
  static void error(double AVG, double tol);
  static void recurError(adaptivePyramid *h, double AVG, double tol);
};

class PCoords {
 public:
  double c[3];
  PCoords(double x, double y, double z)
  {
    c[0] = x; c[1] = y; c[2] = z;
  }
};

class PValues{
 public:
  short int sizev; //acceptable values: 1 (scalar), 3 (vector), 9 (tensor)
  double *v;
  PValues(const PValues& obj)
  {
    sizev = obj.sizev;
    v = new double[sizev];
    for(int i=0;i<sizev;i++) {
      v[i] = obj.v[i];
    }
  }
  PValues(int size)
  {
    sizev = size;
    v = new double[sizev];
    for(int i=0;i<sizev;i++) {
      v[i] = 0.0;
    }
  }
  PValues(double vx)
  {
    sizev = 1;
    v = new double[sizev];
    v[0] = vx;
  }
  PValues(double vx, double vy, double vz)
  {
    sizev = 3;
    v = new double[sizev];
    v[0] = vx; v[1] = vy; v[2] = vz;
  }
  PValues(double vxx, double vxy, double vxz,
          double vyx, double vyy, double vyz,
          double vzx, double vzy, double vzz)
  {
    sizev = 9;
    v = new double[sizev];
    v[0] = vxx; v[1] = vxy; v[2] = vxz;
    v[3] = vyx; v[4] = vyy; v[5] = vyz;
    v[6] = vzx; v[7] = vzy; v[8] = vzz;
  }
  ~PValues()
  {
    delete[] v;
  }
  void operator = (const PValues& obj)
  {
    // Assume PValues object has already been generated
    // and v allocated when the operator = is called
    if(sizev != obj.sizev)
      Msg::Error("In PValues overlodaing operator: size mistmatch %d %d",sizev);
    for(int i=0;i<sizev;i++) {
      v[i] = obj.v[i];
    }
  }
};

class globalVTKData {
 public:
  static std::vector<vectInt> vtkGlobalConnectivity; // conectivity (vector of vector)
  static std::vector<int> vtkGlobalCellType; // topology
  static std::vector<PCoords> vtkGlobalCoords; // coordinates
  static std::vector<PValues> vtkGlobalValues; // nodal values (either scalar or vector)
  globalVTKData();
  static void clearGlobalConnectivity()
  {
    for(std::vector<vectInt>::iterator it = vtkGlobalConnectivity.begin();
        it != vtkGlobalConnectivity.end(); ++it) {
      it->clear();
    }
    vtkGlobalConnectivity.clear();
    std::vector<vectInt>().swap(vtkGlobalConnectivity);
  }
  static void clearGlobalCellType()
  {
    vtkGlobalCellType.clear();
    std::vector<int>().swap(vtkGlobalCellType);
  }
  static void clearGlobalCoords()
  {
    vtkGlobalCoords.clear();
    std::vector<PCoords>().swap(vtkGlobalCoords);
  }
  static void clearGlobalValues()
  {
    vtkGlobalValues.clear();
    std::vector<PValues>().swap(vtkGlobalValues);
  }
  static void clearGlobalData()
  {
    clearGlobalConnectivity();
    clearGlobalCellType();
    clearGlobalCoords();
    clearGlobalValues();
  }
  ~globalVTKData()
  {
    clearGlobalData();
  }
};

class VTKData {
 public:
  // Data container to write output files readable for ParaView
  // vtk legacy and vtu for now
  std::string vtkFieldName;
  std::string vtkFileName;
  std::string vtkFormat;
  std::string vtkDirName;

  int vtkStep;
  int vtkLevel;
  int vtkNumComp;
  double vtkTol;
  int vtkNpart;

  bool vtkIsBinary;
  int vtkUseDefaultName;
  int minElmPerPart, maxElmPerPart, numPartMinElm, numPartMaxElm;

  // File variables
  FILE *vtkFile;
  FILE *vtkFileCoord;
  FILE *vtkFileConnect;
  FILE *vtkFileCellOffset;
  FILE *vtkFileCellType;
  FILE *vtkFileNodVal;
  int vtkCountFile;

  int vtkTotNumElmLev0;
  int vtkCountTotElmLev0;
  int vtkCountTotNod;
  int vtkCountTotElm;
  int vtkCountCoord;
  int vtkCountTotNodConnect;
  int vtkCountTotVal;
  int vtkCountCellOffset; //used only for ascii output
  int vtkCountCellType;  //used only for ascii output

  std::vector<vectInt> vtkLocalConnectivity; // conectivity (vector of vector)
  std::vector<int> vtkLocalCellType; // topology
  std::vector<PCoords> vtkLocalCoords; // coordinates
  std::vector<PValues> vtkLocalValues; // nodal values (either scalar or vector)


public:
  VTKData(std::string fieldName="unknown", int numComp = -1, int step = -1,
          int level = -1, double tol=0.0, std::string filename="unknown",
          int useDefaultName = 1, int npart = -1, bool isBinary = true)
  {
    vtkIsBinary = isBinary; // choice: true, false
    vtkFormat = std::string("vtu"); // choice: vtk (VTK legacy), vtu (XML appended)

    vtkFieldName = fieldName;
    vtkFileName = filename;
    vtkUseDefaultName = useDefaultName;
    vtkNumComp = numComp;
    vtkStep = step;
    vtkLevel = level;
    vtkTol = tol;
    vtkNpart = npart;

    vtkCountFile = 0;
    vtkTotNumElmLev0 = 0;
    vtkCountTotElmLev0 = 0;
    vtkCountTotNod = 0;
    vtkCountTotElm = 0;
    vtkCountCoord = 0;
    vtkCountTotNodConnect = 0;
    vtkCountTotVal = 0;
    vtkCountCellOffset = 0; //used only for ascii output
    vtkCountCellType = 0;
  }
  void clearLocalData()
  {
    for(std::vector<vectInt>::iterator it = vtkLocalConnectivity.begin();
        it != vtkLocalConnectivity.end(); ++it) {
      it->clear();
    }
    vtkLocalConnectivity.clear();
    vtkLocalCellType.clear();
    vtkLocalCoords.clear();
    vtkLocalValues.clear();
  }
  ~VTKData()
  {
    clearLocalData();
  }
  void incrementTotNod(int increment) { vtkCountTotNod+=increment; }
  void incrementTotElm(int increment) { vtkCountTotElm+=increment; }
  void incrementTotElmLev0(int increment) { vtkCountTotElmLev0+=increment; }
  bool isLittleEndian();
  void SwapArrayByteOrder(void* array, int nbytes, int nItems); // used only for VTK
  int getPVCellType(int numEdges);
  // void writeParaViewData();
  void writeVTKElmData();
  void initVTKFile();
  void finalizeVTKFile();
  void setFileDistribution()
  {
    int tmpmod = vtkTotNumElmLev0 % vtkNpart;
    minElmPerPart = (vtkTotNumElmLev0-tmpmod)/vtkNpart;
    numPartMinElm = vtkNpart - tmpmod;

    if(tmpmod == 0 ) maxElmPerPart = minElmPerPart;
    else maxElmPerPart = minElmPerPart+1;
    numPartMaxElm = tmpmod;
    assert(vtkTotNumElmLev0 == minElmPerPart*numPartMinElm+maxElmPerPart*numPartMaxElm);
  }
};

template <class T>
class adaptiveElements {
 private:
  fullMatrix<double> *_coeffsVal, *_eexpsVal, *_interpolVal;
  fullMatrix<double> *_coeffsGeom, *_eexpsGeom, *_interpolGeom;
 public:
  adaptiveElements(std::vector<fullMatrix<double>*> &interpolationMatrices);
  ~adaptiveElements();
  // create the _interpolVal and _interpolGeom matrices at the given
  // refinement level
  void init(int level);
  // process the element data in coords/values and return the refined
  // elements in coords/values
  void adapt(double tol, int numComp,
             std::vector<PCoords> &coords, std::vector<PValues> &values,
             double &minVal, double &maxVal, GMSH_PostPlugin *plug=0,
             bool onlyComputeMinMax=false);
  // adapt all the T-type elements in the input view and add the
  // refined elements in the output view (we will remove this when we
  // switch to true on-the-fly local refinement in drawPost())
  void addInView(double tol, int step, PViewData *in, PViewDataList *out,
                 GMSH_PostPlugin *plug=0);

  // Routines for
  // - export of adapted views to pvtu file format for parallel visualization
  //   with paraview,
  // - and/or generation of VTK data structure for ParaView plugin.

  // Clone of adapt for VTK output files
  void adaptForVTK(double tol, int numComp,
                   std::vector<PCoords> &coords, std::vector<PValues> &values,
                   double &minVal, double &maxVal);

  // Clone of addInView for VTK output files
  void addInViewForVTK(int step, PViewData *in, VTKData &myVTKData,
                       bool writeVtk=true, bool buildStaticData=false);

  int countElmLev0(int step, PViewData *in);

  // Build a mapping between all the nodes of the refined element
  // and the node of the canonical refined element in order to
  // generate a connectivity related to the canonical element
  void buildMapping(nodMap<T> &myNodMap, double tol, int &numNodInsert);
};

class adaptiveData {
 private:
  int _step, _level;
  double _tol;
  PViewData *_inData;
  PViewDataList *_outData;
  adaptiveElements<adaptivePoint> *_points;
  adaptiveElements<adaptiveLine> *_lines;
  adaptiveElements<adaptiveTriangle> *_triangles;
  adaptiveElements<adaptiveQuadrangle> *_quadrangles;
  adaptiveElements<adaptiveTetrahedron> *_tetrahedra;
  adaptiveElements<adaptiveHexahedron> *_hexahedra;
  adaptiveElements<adaptivePrism> *_prisms;
  adaptiveElements<adaptivePyramid> *_pyramids;

  // When set to true, this builds a global VTK data structure (connectivity,
  // coords, etc) for the adaptive views.  This can be very memory consuming for
  // high adaptation levels. Use with caution.  Useful when GMSH is used as an
  // external library to provide for instance a GMSH reader in a ParaView
  // plugin.  By default, set to false in the constructor.
  bool buildStaticData;

  // This variable helps limit memory consumption (no global data structure)
  // when GMSH is requested to write the data structure of adapted view under
  // pvtu format In this case, one adapted element is considered at a time so
  // that it can generate billions of adapted elements on a single core, as long
  // as disk space allows it.  This variable is set to true by default in the
  // constructor.
  bool writeVTK;

 public:
  static double timerInit, timerAdapt;
  adaptiveData(PViewData *data, bool outDataInit=true);
  ~adaptiveData();
  PViewData *getData(){ return (PViewData*)_outData; }
  void changeResolution(int step, int level, double tol, GMSH_PostPlugin *plug=0);
  int countTotElmLev0(int step, PViewData *in);
  void changeResolutionForVTK(int step, int level, double tol, int npart = 1,
                              bool isBinary = true,
                              const std::string &guifileName = "unknown",
                              int useDefaultName = 1);
  void upBuildStaticData(bool newValue) { buildStaticData = newValue; }
  void upWriteVTK(bool newValue) { writeVTK = newValue; }
};

#endif