/usr/include/gmsh/dofManager.h is in libgmsh-dev 3.0.6+dfsg1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 | // Gmsh - Copyright (C) 1997-2017 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to the public mailing list <gmsh@onelab.info>.
#ifndef _DOF_MANAGER_H_
#define _DOF_MANAGER_H_
#include <vector>
#include <string>
#include <complex>
#include <map>
#include <list>
#include <iostream>
#include "MVertex.h"
#include "linearSystem.h"
#include "fullMatrix.h"
class Dof{
protected:
// v(x) = \sum_f \sum_i v_{fi} s^f_i(x)
long int _entity; // "i": node, edge, group, etc.
int _type; // "f": basis function type index, etc.
public:
Dof(long int entity, int type) : _entity(entity), _type(type) {}
inline long int getEntity() const { return _entity; }
inline int getType() const { return _type; }
inline static int createTypeWithTwoInts(int i1, int i2)
{
return i1 + 10000 * i2;
}
inline static void getTwoIntsFromType(int t, int &i1, int &i2)
{
i1 = t % 10000;
i2 = t / 10000;
}
bool operator < (const Dof &other) const
{
if(_entity < other._entity) return true;
if(_entity > other._entity) return false;
if(_type < other._type) return true;
return false;
}
bool operator == (const Dof &other) const{
return (_entity == other._entity && _type == other._type);
}
};
template<class T> struct dofTraits
{
typedef T VecType;
typedef T MatType;
inline static void gemm(VecType &r, const MatType &m, const VecType &v,
double alpha, double beta)
{
r = beta * r + alpha * m * v;
}
};
template<class T> struct dofTraits<fullMatrix<T> >
{
typedef fullMatrix<T> VecType;
typedef fullMatrix<T> MatType;
inline static void gemm (VecType &r, const MatType &m, const VecType &v,
double alpha, double beta)
{
r.gemm(m, v, alpha,beta);
}
};
/*
template<> struct dofTraits<fullVector<std::complex<double> > >
{
typedef fullVector<std::complex<double> > VecType;
typedef fullMatrix<std::complex<double> > MatType;
};
*/
template<class T>
class DofAffineConstraint{
public:
std::vector<std::pair<Dof, typename dofTraits<T>::MatType> > linear;
typename dofTraits<T>::VecType shift;
};
//non template part that can be implemented in the cxx file (and so avoid to include mpi.h in the .h file)
class dofManagerBase{
protected:
// numbering of unknown dof blocks
std::map<Dof, int> unknown;
// associatations (not used ?)
std::map<Dof, Dof> associatedWith;
// parallel section
// those dof are images of ghost located on another proc (id givent by the map).
// this is a first try, maybe not the final implementation
std::map<Dof, std::pair<int, int> > ghostByDof; // dof => procId, globalId
std::vector<std::vector<Dof> > ghostByProc, parentByProc;
int _localSize;
bool _parallelFinalized;
bool _isParallel;
void _parallelFinalize();
dofManagerBase(bool isParallel) {
_isParallel = isParallel;
_parallelFinalized = false;
}
};
// A manager for degrees of freedoms, templated on the value of a dof
// (what the functional returns): float, double, complex<double>,
// fullVecor<double>, ...
template <class T>
class dofManager : public dofManagerBase{
public:
typedef typename dofTraits<T>::VecType dataVec;
typedef typename dofTraits<T>::MatType dataMat;
protected:
// general affine constraint on sub-blocks, treated by adding
// equations:
// Dof = \sum_i dataMat_i x Dof_i + dataVec
std::map<Dof, DofAffineConstraint< dataVec > > constraints;
// fixations on full blocks, treated by eliminating equations:
// DofVec = dataVec
std::map<Dof, dataVec> fixed;
// initial conditions (not used ?)
std::map<Dof, std::vector<dataVec> > initial;
// linearSystems
linearSystem<dataMat> *_current;
std::map<const std::string, linearSystem<dataMat>*> _linearSystems;
std::map<Dof, T> ghostValue;
public:
void scatterSolution();
public:
dofManager(linearSystem<dataMat> *l, bool isParallel=false)
:dofManagerBase(isParallel), _current(l)
{
_linearSystems["A"] = l;
}
dofManager(linearSystem<dataMat> *l1, linearSystem<dataMat> *l2)
:dofManagerBase(false), _current(l1)
{
_linearSystems.insert(std::make_pair("A", l1));
_linearSystems.insert(std::make_pair("B", l2));
}
virtual ~dofManager(){}
virtual inline void fixDof(Dof key, const dataVec &value)
{
if(unknown.find(key) != unknown.end())
return;
fixed[key] = value;
}
inline void fixDof(long int ent, int type, const dataVec &value)
{
fixDof(Dof(ent, type), value);
}
inline void fixVertex(MVertex*v, int iComp, int iField, const dataVec &value)
{
fixDof(v->getNum(), Dof::createTypeWithTwoInts(iComp, iField), value);
}
virtual inline bool isFixed(Dof key) const
{
if(fixed.find(key) != fixed.end()){
return true;
}
return false;
}
virtual inline bool isAnUnknown(Dof key) const
{
if(ghostValue.find(key) == ghostValue.end())
{
if(unknown.find(key) != unknown.end())
return true;
}
return false;
}
virtual inline bool isConstrained(Dof key) const
{
if(constraints.find(key) != constraints.end()){
return true;
}
return false;
}
inline bool isFixed(long int ent, int type) const
{
return isFixed(Dof(ent, type));
}
inline bool isFixed(MVertex*v, int iComp, int iField) const
{
return isFixed(v->getNum(), Dof::createTypeWithTwoInts(iComp, iField));
}
virtual inline void numberGhostDof (Dof key, int procId) {
if (fixed.find(key) != fixed.end()) return;
if (constraints.find(key) != constraints.end()) return;
if (ghostByDof.find(key) != ghostByDof.end()) return;
ghostByDof[key] = std::make_pair(procId, 0);
}
virtual inline void numberDof(Dof key)
{
if (fixed.find(key) != fixed.end()) return;
if (constraints.find(key) != constraints.end()) return;
if (ghostByDof.find(key) != ghostByDof.end()) return;
std::map<Dof, int> :: iterator it = unknown.find(key);
if (it == unknown.end()) {
unsigned int size = unknown.size();
unknown[key] = size;
}
}
virtual inline void numberDof(const std::vector<Dof> &R)
{
for(unsigned int i=0;i<R.size();i++)
this->numberDof(R[i]);
}
inline void numberDof(long int ent, int type)
{
numberDof(Dof(ent, type));
}
inline void numberVertex(MVertex*v, int iComp, int iField)
{
numberDof(v->getNum(), Dof::createTypeWithTwoInts(iComp, iField));
}
virtual inline void getDofValue(std::vector<Dof> &keys, std::vector<dataVec> &Vals)
{
int ndofs = keys.size();
size_t originalSize = Vals.size();
Vals.resize(originalSize + ndofs);
for (int i = 0; i < ndofs; ++i) getDofValue(keys[i], Vals[originalSize+i]);
}
virtual inline bool getAnUnknown(Dof key, dataVec &val) const
{
if(ghostValue.find(key) == ghostValue.end())
{
std::map<Dof, int>::const_iterator it = unknown.find(key);
if (it != unknown.end())
{
_current->getFromSolution(it->second, val);
return true;
}
}
return false;
}
virtual inline void getFixedDofValue(Dof key, dataVec& val) const{
typename std::map<Dof, dataVec>::const_iterator it = fixed.find(key);
if (it != fixed.end()) {
val = it->second;
}
else{
Msg::Error("getFixedDof: Dof is not fixed");
return;
}
};
virtual inline void getDofValue(Dof key, dataVec &val) const
{
{
typename std::map<Dof, dataVec>::const_iterator it = ghostValue.find(key);
if (it != ghostValue.end()) {
val = it->second;
return;
}
}
{
std::map<Dof, int>::const_iterator it = unknown.find(key);
if (it != unknown.end()) {
_current->getFromSolution(it->second, val);
return;
}
}
{
typename std::map<Dof, dataVec>::const_iterator it = fixed.find(key);
if (it != fixed.end()) {
val = it->second;
return;
}
}
{
typename std::map<Dof, DofAffineConstraint< dataVec > >::const_iterator it =
constraints.find(key);
if (it != constraints.end()){
dataVec tmp(val);
val = it->second.shift;
for (unsigned i = 0; i < (it->second).linear.size(); i++){
/* gcc: warning: variable ‘itu’ set but not used
std::map<Dof, int>::const_iterator itu = unknown.find
(((it->second).linear[i]).first);*/
getDofValue(((it->second).linear[i]).first, tmp);
dofTraits<T>::gemm(val, ((it->second).linear[i]).second, tmp, 1, 1);
}
return ;
}
}
}
inline void getDofValue(int ent, int type, dataVec &v) const
{
getDofValue(Dof(ent, type), v);
}
inline void getDofValue(MVertex *v, int iComp, int iField, dataVec &value) const
{
getDofValue(v->getNum(), Dof::createTypeWithTwoInts(iComp, iField), value);
}
virtual inline void insertInSparsityPatternLinConst(const Dof &R, const Dof &C)
{
std::map<Dof, int>::iterator itR = unknown.find(R);
if (itR != unknown.end())
{
typename std::map<Dof, DofAffineConstraint<dataVec> >::iterator itConstraint;
itConstraint = constraints.find(C);
if (itConstraint != constraints.end()){
for (unsigned i = 0; i < (itConstraint->second).linear.size(); i++){
insertInSparsityPattern(R, (itConstraint->second).linear[i].first);
}
}
}
else{ // test function ; (no shift ?)
typename std::map<Dof, DofAffineConstraint<dataVec> >::iterator itConstraint;
itConstraint = constraints.find(R);
if (itConstraint != constraints.end()){
for (unsigned i = 0; i < (itConstraint->second).linear.size(); i++){
insertInSparsityPattern((itConstraint->second).linear[i].first, C);
}
}
}
}
virtual inline void insertInSparsityPattern(const Dof &R, const Dof &C)
{
if (_isParallel && !_parallelFinalized) _parallelFinalize();
if (!_current->isAllocated()) _current->allocate (sizeOfR());
std::map<Dof, int>::iterator itR = unknown.find(R);
if (itR != unknown.end()){
std::map<Dof, int>::iterator itC = unknown.find(C);
if (itC != unknown.end()){
_current->insertInSparsityPattern(itR->second, itC->second);
}
else{
typename std::map<Dof, dataVec>::iterator itFixed = fixed.find(C);
if (itFixed != fixed.end()) {
}
else insertInSparsityPatternLinConst(R, C);
}
}
if (itR == unknown.end())
{
insertInSparsityPatternLinConst(R, C);
}
}
virtual inline void sparsityDof(const std::vector<Dof> &keys){
for (unsigned int itR=0; itR< keys.size(); itR++){
for (unsigned int itC=0; itC<keys.size(); itC++){
insertInSparsityPattern(keys[itR],keys[itC]);
}
}
}
virtual inline void assemble(const Dof &R, const Dof &C, const dataMat &value)
{
if (_isParallel && !_parallelFinalized) _parallelFinalize();
if (!_current->isAllocated()) _current->allocate (sizeOfR());
std::map<Dof, int>::iterator itR = unknown.find(R);
if (itR != unknown.end()){
std::map<Dof, int>::iterator itC = unknown.find(C);
if (itC != unknown.end()){
_current->addToMatrix(itR->second, itC->second, value);
}
else{
typename std::map<Dof, dataVec>::iterator itFixed = fixed.find(C);
if (itFixed != fixed.end()) {
// tmp = -value * itFixed->second
dataVec tmp(itFixed->second);
dofTraits<T>::gemm(tmp, value, itFixed->second, -1, 0);
_current->addToRightHandSide(itR->second, tmp);
}
else assembleLinConst(R, C, value);
}
}
if (itR == unknown.end())
{
assembleLinConst(R, C, value);
}
}
virtual inline void assemble(std::vector<Dof> &R, std::vector<Dof> &C,
const fullMatrix<dataMat> &m)
{
if (_isParallel && !_parallelFinalized) _parallelFinalize();
if (!_current->isAllocated()) _current->allocate(sizeOfR());
std::vector<int> NR(R.size()), NC(C.size());
for (unsigned int i = 0; i < R.size(); i++){
std::map<Dof, int>::iterator itR = unknown.find(R[i]);
if (itR != unknown.end()) NR[i] = itR->second;
else NR[i] = -1;
}
for (unsigned int i = 0; i < C.size(); i++){
std::map<Dof, int>::iterator itC = unknown.find(C[i]);
if (itC != unknown.end()) NC[i] = itC->second;
else NC[i] = -1;
}
for (unsigned int i = 0; i < R.size(); i++){
if (NR[i] != -1){
for (unsigned int j = 0; j < C.size(); j++){
if (NC[j] != -1){
_current->addToMatrix(NR[i], NC[j], m(i, j));
}
else{
typename std::map<Dof, dataVec>::iterator itFixed = fixed.find(C[j]);
if (itFixed != fixed.end()){
// tmp = -m(i,j) * itFixed->second
dataVec tmp(itFixed->second);
dofTraits<T>::gemm(tmp, m(i, j), itFixed->second, -1, 0);
_current->addToRightHandSide(NR[i], tmp);
}
else assembleLinConst(R[i], C[j], m(i, j));
}
}
}
else{
for (unsigned int j = 0; j < C.size(); j++){
assembleLinConst(R[i], C[j], m(i, j));
}
}
}
}
// for linear forms
virtual inline void assemble(std::vector<Dof> &R, const fullVector<dataMat> &m)
{
if (_isParallel && !_parallelFinalized) _parallelFinalize();
if (!_current->isAllocated()) _current->allocate(sizeOfR());
std::vector<int> NR(R.size());
for (unsigned int i = 0; i < R.size(); i++){
std::map<Dof, int>::iterator itR = unknown.find(R[i]);
if (itR != unknown.end()) NR[i] = itR->second;
else NR[i] = -1;
}
for (unsigned int i = 0; i < R.size(); i++){
if (NR[i] != -1){
_current->addToRightHandSide(NR[i], m(i));
}
else{
typename std::map<Dof, DofAffineConstraint<dataVec> >::iterator itConstraint;
itConstraint = constraints.find(R[i]);
if (itConstraint != constraints.end()){
for (unsigned j = 0; j < (itConstraint->second).linear.size(); j++){
dataMat tmp;
dofTraits<T>::gemm(tmp, (itConstraint->second).linear[j].second, m(i), 1, 0);
assemble((itConstraint->second).linear[j].first, tmp);
}
}
}
}
}
virtual inline void assemble(std::vector<Dof> &R, const fullMatrix<dataMat> &m)
{
if (_isParallel && !_parallelFinalized) _parallelFinalize();
if (!_current->isAllocated()) _current->allocate(sizeOfR());
std::vector<int> NR(R.size());
for (unsigned int i = 0; i < R.size(); i++){
std::map<Dof, int>::iterator itR = unknown.find(R[i]);
if (itR != unknown.end()) NR[i] = itR->second;
else NR[i] = -1;
}
for (unsigned int i = 0; i < R.size(); i++){
if (NR[i] != -1){
for (unsigned int j = 0; j < R.size(); j++){
if (NR[j] != -1){
_current->addToMatrix(NR[i], NR[j], m(i, j));
}
else{
typename std::map<Dof, dataVec>::iterator itFixed = fixed.find(R[j]);
if (itFixed != fixed.end()){
// tmp = -m(i,j) * itFixed->second
dataVec tmp(itFixed->second);
dofTraits<T>::gemm(tmp, m(i, j), itFixed->second, -1, 0);
_current->addToRightHandSide(NR[i], tmp);
} else assembleLinConst(R[i], R[j], m(i, j));
}
}
}
else{
for (unsigned int j = 0; j < R.size(); j++){
assembleLinConst(R[i], R[j], m(i, j));
}
}
}
}
inline void assemble(int entR, int typeR, int entC, int typeC, const dataMat &value)
{
assemble(Dof(entR, typeR), Dof(entC, typeC), value);
}
inline void assemble(MVertex *vR, int iCompR, int iFieldR,
MVertex *vC, int iCompC, int iFieldC,
const dataMat &value)
{
assemble(vR->getNum(), Dof::createTypeWithTwoInts(iCompR, iFieldR),
vC->getNum(), Dof::createTypeWithTwoInts(iCompC, iFieldC),
value);
}
virtual inline void assemble(const Dof &R, const dataMat &value)
{
if (_isParallel && !_parallelFinalized) _parallelFinalize();
if(!_current->isAllocated()) _current->allocate(sizeOfR());
std::map<Dof, int>::iterator itR = unknown.find(R);
if(itR != unknown.end()){
_current->addToRightHandSide(itR->second, value);
}
else{
typename std::map<Dof, DofAffineConstraint<dataVec> >::iterator itConstraint;
itConstraint = constraints.find(R);
if (itConstraint != constraints.end()){
for (unsigned j = 0; j < (itConstraint->second).linear.size(); j++){
dataMat tmp;
dofTraits<T>::gemm(tmp, (itConstraint->second).linear[j].second, value, 1, 0);
assemble((itConstraint->second).linear[j].first, tmp);
}
}
}
}
inline void assemble(int entR, int typeR, const dataMat &value)
{
assemble(Dof(entR, typeR), value);
}
inline void assemble(MVertex *vR, int iCompR, int iFieldR,
const dataMat &value)
{
assemble(vR->getNum(), Dof::createTypeWithTwoInts(iCompR, iFieldR), value);
}
virtual int sizeOfR() const { return _isParallel ? _localSize : unknown.size(); }
virtual int sizeOfF() const { return fixed.size(); }
virtual void systemSolve(){ _current->systemSolve(); }
virtual void systemClear()
{
_current->zeroMatrix();
_current->zeroRightHandSide();
}
virtual inline void setCurrentMatrix(std::string name)
{
typename std::map<const std::string, linearSystem<dataMat>*>::iterator it =
_linearSystems.find(name);
if(it != _linearSystems.end())
_current = it->second;
else{
Msg::Error("Current matrix %s not found ", name.c_str());
throw;
}
}
virtual linearSystem<dataMat> *getLinearSystem(std::string &name)
{
typename std::map<const std::string, linearSystem<dataMat>*>::iterator it =
_linearSystems.find(name);
if(it != _linearSystems.end())
return it->second;
else
return 0;
}
virtual inline void setLinearConstraint (Dof key, DofAffineConstraint<dataVec> &affineconstraint)
{
constraints[key] = affineconstraint;
// constraints.insert(std::make_pair(key, affineconstraint));
}
virtual inline bool getLinearConstraint (Dof key, DofAffineConstraint<dataVec> &affineconstraint)
{
typename std::map<Dof, DofAffineConstraint< dataVec > >::const_iterator it=constraints.find(key);
if (it!=constraints.end())
{
affineconstraint=it->second;
return true;
}
return false;
}
virtual inline void assembleLinConst(const Dof &R, const Dof &C, const dataMat &value)
{
std::map<Dof, int>::iterator itR = unknown.find(R);
if (itR != unknown.end())
{
typename std::map<Dof, DofAffineConstraint<dataVec> >::iterator itConstraint;
itConstraint = constraints.find(C);
if (itConstraint != constraints.end()){
dataMat tmp(value);
for (unsigned i = 0; i < (itConstraint->second).linear.size(); i++){
dofTraits<T>::gemm(tmp, (itConstraint->second).linear[i].second, value, 1, 0);
assemble(R, (itConstraint->second).linear[i].first, tmp);
}
dataMat tmp2(value);
dofTraits<T>::gemm(tmp2, value, itConstraint->second.shift, -1, 0);
_current->addToRightHandSide(itR->second, tmp2);
}
}
else{ // test function ; (no shift ?)
typename std::map<Dof, DofAffineConstraint<dataVec> >::iterator itConstraint;
itConstraint = constraints.find(R);
if (itConstraint != constraints.end()){
dataMat tmp(value);
for (unsigned i = 0; i < (itConstraint->second).linear.size(); i++){
dofTraits<T>::gemm(tmp, itConstraint->second.linear[i].second, value, 1, 0);
assemble((itConstraint->second).linear[i].first, C, tmp);
}
}
}
}
virtual void getFixedDof(std::vector<Dof> &R)
{
R.clear();
R.reserve(fixed.size());
typename std::map<Dof, dataVec>::iterator it;
for(it = fixed.begin(); it != fixed.end(); ++it){
R.push_back(it->first);
}
}
virtual void getFixedDof(std::set<Dof>& R)
{
R.clear();
typename std::map<Dof, dataVec>::iterator it;
for(it = fixed.begin(); it != fixed.end(); ++it){
R.insert(it->first);
}
}
virtual int getDofNumber(const Dof& key)
{
std::map<Dof,int>::iterator it = unknown.find(key);
if (it == unknown.end()){
return -1;
}
else return it->second;
}
virtual void clearAllLineConstraints() {
constraints.clear();
}
std::map<Dof, DofAffineConstraint< dataVec > >& getAllLinearConstraints(){
return constraints;
};
};
#endif
|