/usr/include/gmsh/functionSpace.h is in libgmsh-dev 3.0.6+dfsg1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 | // Gmsh - Copyright (C) 1997-2017 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to the public mailing list <gmsh@onelab.info>.
#ifndef _FUNCTION_SPACE_H_
#define _FUNCTION_SPACE_H_
#include "SVector3.h"
#include "STensor3.h"
#include "STensor33.h"
#include "STensor43.h"
#include <vector>
#include <iterator>
#include <iostream>
#include "Numeric.h"
#include "MElement.h"
#include "dofManager.h"
#include "simpleFunction.h"
//class SVoid{};
template<class T> struct TensorialTraits
{
typedef T ValType;
typedef T GradType[3];
typedef T HessType[3][3];
typedef T ThirdDevType[3][3][3];
/* typedef SVoid DivType;
typedef SVoid CurlType;*/
};
template<> struct TensorialTraits<double>
{
typedef double ValType;
typedef SVector3 GradType;
typedef STensor3 HessType;
typedef double TensProdType;
typedef STensor33 ThirdDevType;
/* typedef SVoid DivType;
typedef SVoid CurlType;*/
};
template<> struct TensorialTraits<SVector3>
{
typedef SVector3 ValType;
typedef STensor3 GradType;
typedef STensor3 HessType;
typedef STensor3 TensProdType;
typedef STensor3 ThirdDevType;
// typedef double DivType;
// typedef SVector3 CurlType;
};
template<> struct TensorialTraits<STensor3>
{
typedef STensor3 ValType;
// typedef STensor3 GradType;
// typedef STensor3 HessType;
// typedef STensor3 TensProdType;
typedef STensor43 TensProdType;
// typedef double DivType;
// typedef SVector3 CurlType;
};
class FunctionSpaceBase
{
public:
virtual ~FunctionSpaceBase(){}
virtual int getId(void) const =0;
virtual int getNumKeys(MElement *ele) const = 0; // if one needs the number of dofs
virtual void getKeys(MElement *ele, std::vector<Dof> &keys) const = 0;
virtual void getKeysOnVertex(MElement* ele, MVertex* v, const std::vector<int>& comp, std::vector<Dof>& keys) const{
Msg::Warning("this function is defined to get Dofs of vertex %d on element %d",v->getNum(),ele->getNum());
}
virtual FunctionSpaceBase* clone(const int id) const {return NULL;}; // copy space with new Id
};
template<class T>
class FunctionSpace : public FunctionSpaceBase
{
protected:
int _iField; // field number (used to build dof keys)
public:
typedef typename TensorialTraits<T>::ValType ValType;
typedef typename TensorialTraits<T>::GradType GradType;
typedef typename TensorialTraits<T>::HessType HessType;
typedef typename TensorialTraits<T>::ThirdDevType ThirdDevType;
virtual int getId(void) const {return _iField;}
virtual void f(MElement *ele, double u, double v, double w, std::vector<ValType> &vals) const = 0;
virtual void fuvw(MElement *ele, double u, double v, double w, std::vector<ValType> &vals) const {} // should return to pure virtual once all is done.
virtual void gradf(MElement *ele, double u, double v, double w, std::vector<GradType> &grads) const = 0;
virtual void gradfuvw(MElement *ele, double u, double v, double w, std::vector<GradType> &grads) const {} // should return to pure virtual once all is done.
virtual void hessfuvw(MElement *ele, double u, double v, double w, std::vector<HessType> &hess) const = 0;
virtual void hessf(MElement *ele, double u, double v, double w,std::vector<HessType> &hess) const {} //need to high order fem
virtual void thirdDevfuvw(MElement *ele, double u, double v, double w,std::vector<ThirdDevType> &third) const {}; //need to high order fem
virtual void thirdDevf(MElement *ele, double u, double v, double w,std::vector<ThirdDevType> &third) const {}; //need to high order fem
virtual int getNumKeys(MElement *ele) const = 0; // if one needs the number of dofs
virtual void getKeys(MElement *ele, std::vector<Dof> &keys) const = 0;
};
class ScalarLagrangeFunctionSpaceOfElement : public FunctionSpace<double>
{
public:
typedef TensorialTraits<double>::ValType ValType;
typedef TensorialTraits<double>::GradType GradType;
typedef TensorialTraits<double>::HessType HessType;
private:
virtual void getKeys(MVertex *ver, std::vector<Dof> &keys) const
{
keys.push_back(Dof(ver->getNum(), _iField));
}
public:
ScalarLagrangeFunctionSpaceOfElement(int i = 0) { _iField = i; }
virtual void f(MElement *ele, double u, double v, double w, std::vector<ValType> &vals) const
{
if(ele->getParent()) {
if(ele->getTypeForMSH() == MSH_LIN_B || ele->getTypeForMSH() == MSH_TRI_B ||
ele->getTypeForMSH() == MSH_POLYG_B) { //FIXME MPolygonBorders...
ele->movePointFromParentSpaceToElementSpace(u, v, w);
}
}
int ndofs = ele->getNumShapeFunctions();
int curpos = vals.size();
vals.resize(curpos + ndofs);
ele->getShapeFunctions(u, v, w, &(vals[curpos]));
}
// Fonction renvoyant un vecteur contenant le grandient de chaque FF
virtual void gradf(MElement *ele, double u, double v, double w, std::vector<GradType> &grads) const
{
if(ele->getParent()) {
if(ele->getTypeForMSH() == MSH_LIN_B || ele->getTypeForMSH() == MSH_TRI_B ||
ele->getTypeForMSH() == MSH_POLYG_B) { //FIXME MPolygonBorders...
ele->movePointFromParentSpaceToElementSpace(u, v, w);
}
}
int ndofs = ele->getNumShapeFunctions();
grads.reserve(grads.size() + ndofs);
double gradsuvw[256][3];
ele->getGradShapeFunctions(u, v, w, gradsuvw);
double jac[3][3];
double invjac[3][3];
ele->getJacobian(u, v, w, jac); // redondant : on fait cet appel a l'exterieur
inv3x3(jac, invjac);
for(int i = 0; i < ndofs; ++i)
grads.push_back(GradType(
invjac[0][0] * gradsuvw[i][0] + invjac[0][1] * gradsuvw[i][1] + invjac[0][2] * gradsuvw[i][2],
invjac[1][0] * gradsuvw[i][0] + invjac[1][1] * gradsuvw[i][1] + invjac[1][2] * gradsuvw[i][2],
invjac[2][0] * gradsuvw[i][0] + invjac[2][1] * gradsuvw[i][1] + invjac[2][2] * gradsuvw[i][2]));
}
// Fonction renvoyant un vecteur contenant le hessien [][] de chaque FF dans l'espace ISOPARAMETRIQUE
virtual void hessfuvw(MElement *ele, double u, double v, double w, std::vector<HessType> &hess) const
{
if(ele->getParent()) {
if(ele->getTypeForMSH() == MSH_LIN_B || ele->getTypeForMSH() == MSH_TRI_B ||
ele->getTypeForMSH() == MSH_POLYG_B) { //FIXME MPolygonBorders...
ele->movePointFromParentSpaceToElementSpace(u, v, w);
}
}
int ndofs = ele->getNumShapeFunctions();
hess.reserve(hess.size() + ndofs); // permet de mettre les composantes suivantes à la suite du vecteur
double hessuvw[256][3][3];
ele->getHessShapeFunctions(u, v, w, hessuvw);
HessType hesst;
for(int i = 0; i < ndofs; ++i){
hesst(0,0) = hessuvw[i][0][0]; hesst(0,1) = hessuvw[i][0][1]; hesst(0,2) = hessuvw[i][0][2];
hesst(1,0) = hessuvw[i][1][0]; hesst(1,1) = hessuvw[i][1][1]; hesst(1,2) = hessuvw[i][1][2];
hesst(2,0) = hessuvw[i][2][0]; hesst(2,1) = hessuvw[i][2][1]; hesst(2,2) = hessuvw[i][2][2];
hess.push_back(hesst);
}
}
virtual void gradfuvw(MElement *ele, double u, double v, double w, std::vector<GradType> &grads) const
{
if(ele->getParent()) {
if(ele->getTypeForMSH() == MSH_LIN_B || ele->getTypeForMSH() == MSH_TRI_B ||
ele->getTypeForMSH() == MSH_POLYG_B) { //FIXME MPolygonBorders...
ele->movePointFromParentSpaceToElementSpace(u, v, w);
}
}
int ndofs = ele->getNumShapeFunctions();
grads.reserve(grads.size() + ndofs);
double gradsuvw[256][3];
ele->getGradShapeFunctions(u, v, w, gradsuvw);
for(int i = 0; i < ndofs; ++i)
grads.push_back(GradType(gradsuvw[i][0], gradsuvw[i][1], gradsuvw[i][2]));
}
virtual int getNumKeys(MElement *ele) const
{
return ele->getNumShapeFunctions();
}
virtual void getKeys(MElement *ele, std::vector<Dof> &keys) const // appends ...
{
int ndofs = ele->getNumShapeFunctions();
keys.reserve(keys.size() + ndofs);
for(int i = 0; i < ndofs; ++i)
getKeys(ele->getShapeFunctionNode(i), keys);
}
};
class ScalarLagrangeFunctionSpace : public FunctionSpace<double>
{
public:
typedef TensorialTraits<double>::ValType ValType;
typedef TensorialTraits<double>::GradType GradType;
typedef TensorialTraits<double>::HessType HessType;
private:
virtual void getKeys(MVertex *ver, std::vector<Dof> &keys) const
{
keys.push_back(Dof(ver->getNum(), _iField));
}
public:
ScalarLagrangeFunctionSpace(int i = 0) { _iField = i; }
virtual void f(MElement *ele, double u, double v, double w, std::vector<ValType> &vals) const
{
if(ele->getParent()) ele = ele->getParent();
int ndofs = ele->getNumShapeFunctions();
int curpos = vals.size();
vals.resize(curpos + ndofs);
ele->getShapeFunctions(u, v, w, &(vals[curpos]));
}
// Fonction renvoyant un vecteur contenant le grandient de chaque FF
virtual void gradf(MElement *ele, double u, double v, double w, std::vector<GradType> &grads) const
{
if(ele->getParent()) ele = ele->getParent();
int ndofs = ele->getNumShapeFunctions();
grads.reserve(grads.size() + ndofs);
double gradsuvw[256][3];
ele->getGradShapeFunctions(u, v, w, gradsuvw);
double jac[3][3];
double invjac[3][3];
ele->getJacobian(u, v, w, jac); // redondant : on fait cet appel a l'exterieur
inv3x3(jac, invjac);
for(int i = 0; i < ndofs; ++i)
grads.push_back(GradType(
invjac[0][0] * gradsuvw[i][0] + invjac[0][1] * gradsuvw[i][1] + invjac[0][2] * gradsuvw[i][2],
invjac[1][0] * gradsuvw[i][0] + invjac[1][1] * gradsuvw[i][1] + invjac[1][2] * gradsuvw[i][2],
invjac[2][0] * gradsuvw[i][0] + invjac[2][1] * gradsuvw[i][1] + invjac[2][2] * gradsuvw[i][2]));
}
// Fonction renvoyant un vecteur contenant le hessien [][] de chaque FF dans l'espace ISOPARAMETRIQUE
virtual void hessfuvw(MElement *ele, double u, double v, double w, std::vector<HessType> &hess) const
{
if(ele->getParent()) ele = ele->getParent();
int ndofs = ele->getNumShapeFunctions();
hess.reserve(hess.size() + ndofs); // permet de mettre les composantes suivantes à la suite du vecteur
double hessuvw[256][3][3];
ele->getHessShapeFunctions(u, v, w, hessuvw);
HessType hesst;
for(int i = 0; i < ndofs; ++i){
hesst(0,0) = hessuvw[i][0][0]; hesst(0,1) = hessuvw[i][0][1]; hesst(0,2) = hessuvw[i][0][2];
hesst(1,0) = hessuvw[i][1][0]; hesst(1,1) = hessuvw[i][1][1]; hesst(1,2) = hessuvw[i][1][2];
hesst(2,0) = hessuvw[i][2][0]; hesst(2,1) = hessuvw[i][2][1]; hesst(2,2) = hessuvw[i][2][2];
hess.push_back(hesst);
}
}
virtual void gradfuvw(MElement *ele, double u, double v, double w, std::vector<GradType> &grads) const
{
if(ele->getParent()) ele = ele->getParent();
int ndofs = ele->getNumShapeFunctions();
grads.reserve(grads.size() + ndofs);
double gradsuvw[256][3];
ele->getGradShapeFunctions(u, v, w, gradsuvw);
for(int i = 0; i < ndofs; ++i)
grads.push_back(GradType(gradsuvw[i][0], gradsuvw[i][1], gradsuvw[i][2]));
}
virtual void fuvw(MElement *ele, double u, double v, double w,std::vector<ValType> &vals) const
{
if(ele->getParent()) ele = ele->getParent();
int ndofs= ele->getNumShapeFunctions();
vals.reserve(vals.size()+ndofs);
double valsuvw[1256];
ele->getShapeFunctions(u, v, w, valsuvw);
for(int i = 0; i < ndofs; ++i)
vals.push_back(valsuvw[i]);
}
virtual int getNumKeys(MElement *ele) const
{
if(ele->getParent()) ele = ele->getParent();
return ele->getNumShapeFunctions();
}
virtual void getKeys(MElement *ele, std::vector<Dof> &keys) const // appends ...
{
if(ele->getParent()) ele = ele->getParent();
int ndofs = ele->getNumShapeFunctions();
keys.reserve(keys.size() + ndofs);
for(int i = 0; i < ndofs; ++i)
getKeys(ele->getShapeFunctionNode(i), keys);
}
};
template <class T> class ScalarToAnyFunctionSpace : public FunctionSpace<T>
{
public :
typedef typename TensorialTraits<T>::ValType ValType;
typedef typename TensorialTraits<T>::GradType GradType;
typedef typename TensorialTraits<T>::HessType HessType;
protected :
std::vector<T> multipliers;
std::vector<int> comp;
FunctionSpace<double> *ScalarFS;
public :
template <class T2> ScalarToAnyFunctionSpace(const T2 &SFS, const T& mult, int comp_): ScalarFS(new T2(SFS))
{
multipliers.push_back(mult); comp.push_back(comp_);
}
template <class T2> ScalarToAnyFunctionSpace(const T2 &SFS, const T& mult1, int comp1_,
const T& mult2, int comp2_): ScalarFS(new T2(SFS))
{
multipliers.push_back(mult1); multipliers.push_back(mult2);
comp.push_back(comp1_); comp.push_back(comp2_);
}
template <class T2> ScalarToAnyFunctionSpace(const T2 &SFS, const T& mult1, int comp1_,
const T& mult2, int comp2_, const T& mult3, int comp3_): ScalarFS(new T2(SFS))
{
multipliers.push_back(mult1); multipliers.push_back(mult2); multipliers.push_back(mult3);
comp.push_back(comp1_); comp.push_back(comp2_); comp.push_back(comp3_);
}
virtual ~ScalarToAnyFunctionSpace() {delete ScalarFS;}
virtual void f(MElement *ele, double u, double v, double w, std::vector<ValType> &vals) const
{
std::vector<double> valsd;
ScalarFS->f(ele, u, v, w, valsd);
int nbdofs = valsd.size();
int nbcomp = comp.size();
int curpos = vals.size();
vals.reserve(curpos + nbcomp * nbdofs);
for(int j = 0; j < nbcomp; ++j){
for(int i = 0; i < nbdofs; ++i)
vals.push_back(multipliers[j] * valsd[i]);
}
}
virtual void gradf(MElement *ele, double u, double v, double w, std::vector<GradType> &grads) const
{
std::vector<SVector3> gradsd;
ScalarFS->gradf(ele, u, v, w, gradsd);
int nbdofs = gradsd.size();
int nbcomp = comp.size();
int curpos = grads.size();
grads.reserve(curpos + nbcomp * nbdofs);
GradType val;
for(int j = 0; j < nbcomp; ++j){
for(int i = 0; i < nbdofs; ++i){
tensprod(multipliers[j], gradsd[i], val);
grads.push_back(val);
}
}
}
virtual void hessfuvw(MElement *ele, double u, double v, double w, std::vector<HessType> &hess) const
{
ScalarFS->hessfuvw(ele, u, v, w, hess);
}
virtual void gradfuvw(MElement *ele, double u, double v, double w, std::vector<GradType> &grads) const
{
std::vector<SVector3> gradsd;
ScalarFS->gradfuvw(ele, u, v, w, gradsd);
int nbdofs = gradsd.size();
int nbcomp = comp.size();
int curpos = grads.size();
grads.reserve(curpos + nbcomp * nbdofs);
GradType val;
for(int j = 0; j < nbcomp; ++j){
for(int i = 0; i < nbdofs; ++i){
tensprod(multipliers[j], gradsd[i], val);
grads.push_back(val);
}
}
}
virtual int getNumKeys(MElement *ele) const {return ScalarFS->getNumKeys(ele) * comp.size();}
virtual void getKeys(MElement *ele, std::vector<Dof> &keys) const
{
int nk = ScalarFS->getNumKeys(ele);
std::vector<Dof> bufk;
bufk.reserve(nk);
ScalarFS->getKeys(ele, bufk);
int nbdofs = bufk.size();
int nbcomp = comp.size();
int curpos = keys.size();
keys.reserve(curpos + nbcomp * nbdofs);
for(int j = 0; j < nbcomp; ++j){
for(int i = 0; i < nk; ++i){
int i1, i2;
Dof::getTwoIntsFromType(bufk[i].getType(), i1, i2);
keys.push_back(Dof(bufk[i].getEntity(), Dof::createTypeWithTwoInts(comp[j], i1)));
}
}
}
};
class VectorLagrangeFunctionSpaceOfElement : public ScalarToAnyFunctionSpace<SVector3>
{
protected:
static const SVector3 BasisVectors[3];
public:
enum Along { VECTOR_X = 0, VECTOR_Y = 1, VECTOR_Z = 2 };
typedef TensorialTraits<SVector3>::ValType ValType;
typedef TensorialTraits<SVector3>::GradType GradType;
VectorLagrangeFunctionSpaceOfElement(int id) :
ScalarToAnyFunctionSpace<SVector3>::ScalarToAnyFunctionSpace(ScalarLagrangeFunctionSpaceOfElement(id),
SVector3(1.,0.,0.), VECTOR_X, SVector3(0.,1.,0.), VECTOR_Y, SVector3(0.,0.,1.), VECTOR_Z)
{}
VectorLagrangeFunctionSpaceOfElement(int id, Along comp1) :
ScalarToAnyFunctionSpace<SVector3>::ScalarToAnyFunctionSpace(ScalarLagrangeFunctionSpaceOfElement(id),
BasisVectors[comp1], comp1)
{}
VectorLagrangeFunctionSpaceOfElement(int id, Along comp1, Along comp2) :
ScalarToAnyFunctionSpace<SVector3>::ScalarToAnyFunctionSpace(ScalarLagrangeFunctionSpaceOfElement(id),
BasisVectors[comp1], comp1, BasisVectors[comp2], comp2)
{}
VectorLagrangeFunctionSpaceOfElement(int id, Along comp1, Along comp2, Along comp3) :
ScalarToAnyFunctionSpace<SVector3>::ScalarToAnyFunctionSpace(ScalarLagrangeFunctionSpaceOfElement(id),
BasisVectors[comp1], comp1, BasisVectors[comp2], comp2, BasisVectors[comp3], comp3)
{}
};
class VectorLagrangeFunctionSpace : public ScalarToAnyFunctionSpace<SVector3>
{
protected:
static const SVector3 BasisVectors[3];
public:
enum Along { VECTOR_X = 0, VECTOR_Y = 1, VECTOR_Z = 2 };
typedef TensorialTraits<SVector3>::ValType ValType;
typedef TensorialTraits<SVector3>::GradType GradType;
VectorLagrangeFunctionSpace(int id) :
ScalarToAnyFunctionSpace<SVector3>::ScalarToAnyFunctionSpace(ScalarLagrangeFunctionSpace(id),
SVector3(1.,0.,0.), VECTOR_X, SVector3(0.,1.,0.), VECTOR_Y, SVector3(0.,0.,1.), VECTOR_Z)
{}
VectorLagrangeFunctionSpace(int id, Along comp1) :
ScalarToAnyFunctionSpace<SVector3>::ScalarToAnyFunctionSpace(ScalarLagrangeFunctionSpace(id),
BasisVectors[comp1], comp1)
{}
VectorLagrangeFunctionSpace(int id, Along comp1, Along comp2) :
ScalarToAnyFunctionSpace<SVector3>::ScalarToAnyFunctionSpace(ScalarLagrangeFunctionSpace(id),
BasisVectors[comp1], comp1, BasisVectors[comp2], comp2)
{}
VectorLagrangeFunctionSpace(int id, Along comp1, Along comp2, Along comp3) :
ScalarToAnyFunctionSpace<SVector3>::ScalarToAnyFunctionSpace(ScalarLagrangeFunctionSpace(id),
BasisVectors[comp1], comp1, BasisVectors[comp2], comp2, BasisVectors[comp3], comp3)
{}
};
template<class T>
class CompositeFunctionSpace : public FunctionSpace<T>
{
public:
typedef typename TensorialTraits<T>::ValType ValType;
typedef typename TensorialTraits<T>::GradType GradType;
typedef typename TensorialTraits<T>::HessType HessType;
typedef typename std::vector<FunctionSpace<T>* >::iterator iterFS;
protected:
std::vector<FunctionSpace<T>* > _spaces;
public:
template <class T1> CompositeFunctionSpace(const T1& t) { _spaces.push_back(new T1(t));}
template <class T1, class T2> CompositeFunctionSpace(const T1& t1, const T2& t2)
{ _spaces.push_back(new T1(t1));
_spaces.push_back(new T2(t2)); }
template <class T1, class T2, class T3> CompositeFunctionSpace(const T1& t1, const T2& t2, const T3& t3)
{ _spaces.push_back(new T1(t1));
_spaces.push_back(new T2(t2));
_spaces.push_back(new T3(t3)); }
template <class T1, class T2, class T3, class T4> CompositeFunctionSpace(const T1& t1, const T2& t2, const T3& t3, const T4& t4)
{ _spaces.push_back(new T1(t1));
_spaces.push_back(new T2(t2));
_spaces.push_back(new T3(t3));
_spaces.push_back(new T4(t4)); }
template <class T1> void insert(const T1& t)
{
_spaces.push_back(new T(t));
}
~CompositeFunctionSpace(void)
{
for (iterFS it = _spaces.begin(); it != _spaces.end(); ++it)
delete (*it);
}
virtual void f(MElement *ele, double u, double v, double w, std::vector<ValType> &vals) const
{
for (iterFS it = _spaces.begin(); it != _spaces.end(); ++it)
(*it)->f(ele, u, v, w, vals);
}
virtual void gradf(MElement *ele, double u, double v, double w, std::vector<GradType> &grads) const
{
for (iterFS it = _spaces.begin(); it != _spaces.end(); ++it)
(*it)->gradf(ele, u, v, w, grads);
}
virtual void hessfuvw(MElement *ele, double u, double v, double w, std::vector<HessType> &hess) const
{
for (iterFS it = _spaces.begin(); it != _spaces.end(); ++it)
(*it)->hessfuvw(ele, u, v, w, hess);
}
virtual int getNumKeys(MElement *ele) const
{
int ndofs = 0;
for (iterFS it = _spaces.begin(); it != _spaces.end(); ++it)
ndofs += (*it)->getNumKeys(ele);
return ndofs;
}
virtual void getKeys(MElement *ele, std::vector<Dof> &keys) const
{
for (iterFS it = _spaces.begin(); it != _spaces.end(); ++it)
(*it)->getKeys(ele, keys);
}
};
template<class T>
class xFemFunctionSpace : public FunctionSpace<T>
{
public:
typedef typename TensorialTraits<T>::ValType ValType;
typedef typename TensorialTraits<T>::GradType GradType;
typedef typename TensorialTraits<T>::HessType HessType;
protected:
FunctionSpace<T>* _spacebase;
simpleFunctionOnElement<double> *_funcEnrichment;
public:
virtual void hessfuvw(MElement *ele, double u, double v, double w,std::vector<HessType> &hess) const {}
xFemFunctionSpace(FunctionSpace<T>* spacebase,simpleFunctionOnElement<double> *funcEnrichment) :
_spacebase(spacebase),_funcEnrichment(funcEnrichment){}
virtual void f(MElement *ele, double u, double v, double w,std::vector<ValType> &vals) const ;
virtual void gradf(MElement *ele, double u, double v, double w,std::vector<GradType> &grads) const;
virtual int getNumKeys(MElement *ele) const;
virtual void getKeys(MElement *ele, std::vector<Dof> &keys) const;
};
template<class T, class F>
class FilteredFunctionSpace : public FunctionSpace<T>
{
public :
typedef typename TensorialTraits<T>::ValType ValType;
typedef typename TensorialTraits<T>::GradType GradType;
typedef typename TensorialTraits<T>::HessType HessType;
protected:
FunctionSpace<T>* _spacebase;
F *_filter;
public:
virtual void hessfuvw(MElement *ele, double u, double v, double w, std::vector<HessType> &hess) const {}
FilteredFunctionSpace<T,F>(FunctionSpace<T>* spacebase,F * filter) : _spacebase(spacebase), _filter(filter){}
virtual void f(MElement *ele, double u, double v, double w, std::vector<ValType> &vals) const;
virtual void gradf(MElement *ele, double u, double v, double w, std::vector<GradType> &grads) const;
virtual int getNumKeys(MElement *ele) const;
virtual void getKeys(MElement *ele, std::vector<Dof> &keys) const;
};
template <class T> void xFemFunctionSpace<T>::f(MElement *ele, double u, double v, double w, std::vector<ValType> &vals) const
{
// We need parent parameters
MElement * elep;
if (ele->getParent()) elep = ele->getParent();
else elep = ele;
// Get the spacebase valsd
std::vector<ValType> valsd;
xFemFunctionSpace<T>::_spacebase->f(elep, u, v, w, valsd);
int nbdofs = valsd.size();
int curpos = vals.size(); // if in composite function space
vals.reserve(curpos + nbdofs);
// then enriched dofs so the order is ex:(a2x,a2y,a3x,a3y)
if (nbdofs > 0){ // if enriched
// Enrichment function calcul
SPoint3 p;
elep->pnt(u, v, w, p); // parametric to cartesian coordinates
double func;
_funcEnrichment->setElement(elep);
func = (*_funcEnrichment)(p.x(), p.y(), p.z());
for (int i = 0 ; i < nbdofs; i++){
vals.push_back(valsd[i] * func);
}
}
}
template <class T> void xFemFunctionSpace<T>::gradf(MElement *ele, double u, double v, double w, std::vector<GradType> &grads) const
{
// We need parent parameters
MElement *elep;
if (ele->getParent()) elep = ele->getParent();
else elep = ele;
// Get the spacebase gradsd
std::vector<GradType> gradsd;
xFemFunctionSpace<T>::_spacebase->gradf(elep, u, v, w, gradsd);
int nbdofs=gradsd.size();
// We need spacebase valsd to compute total gradient
std::vector<ValType> valsd;
xFemFunctionSpace<T>::_spacebase->f(elep, u, v, w, valsd);
int curpos = grads.size(); // if in composite function space
grads.reserve(curpos + nbdofs);
// then enriched dofs so the order is ex:(a2x,a2y,a3x,a3y)
if (nbdofs > 0){ // if enriched
double df[3];
SPoint3 p;
elep->pnt(u, v, w, p);
_funcEnrichment->setElement(elep);
_funcEnrichment->gradient (p.x(), p.y(), p.z(), df[0], df[1], df[2]);
ValType gradfuncenrich(df[0], df[1], df[2]);
// Enrichment function calcul
double func;
_funcEnrichment->setElement(elep);
func = (*_funcEnrichment)(p.x(), p.y(), p.z());
for (int i = 0 ; i < nbdofs; i++){
GradType GradFunc;
tensprod(valsd[i], gradfuncenrich, GradFunc);
grads.push_back(gradsd[i] * func + GradFunc);
}
}
}
template <class T> int xFemFunctionSpace<T>::getNumKeys(MElement *ele) const
{
MElement *elep;
if (ele->getParent()) elep = ele->getParent();
else elep = ele;
int nbdofs = xFemFunctionSpace<T>::_spacebase->getNumKeys(elep);
return nbdofs;
}
template <class T> void xFemFunctionSpace<T>::getKeys(MElement *ele, std::vector<Dof> &keys) const
{
MElement *elep;
if (ele->getParent()) elep = ele->getParent();
else elep = ele;
int normalk = xFemFunctionSpace<T>::_spacebase->getNumKeys(elep);
std::vector<Dof> bufk;
bufk.reserve(normalk);
xFemFunctionSpace<T>::_spacebase->getKeys(elep, bufk);
int normaldofs = bufk.size();
int nbdofs = normaldofs;
int curpos = keys.size();
keys.reserve(curpos + nbdofs);
// get keys so the order is ex:(a2x,a2y,a3x,a3y)
// enriched dof tagged with ( i2 -> i2 + 1 )
for (int i = 0 ;i < nbdofs; i++){
int i1, i2;
Dof::getTwoIntsFromType(bufk[i].getType(), i1, i2);
keys.push_back(Dof(bufk[i].getEntity(), Dof::createTypeWithTwoInts(i1, i2 + 1)));
}
}
// Filtered function space
//
template <class T,class F> void FilteredFunctionSpace<T,F>::f(MElement *ele, double u, double v, double w, std::vector<ValType> &vals) const
{
// We need parent parameters
MElement *elep;
if (ele->getParent()) elep = ele->getParent();
else elep = ele;
std::vector<ValType> valsd;
_spacebase->f(elep, u, v, w, valsd);
int normalk = _spacebase->getNumKeys(elep);
std::vector<Dof> bufk;
bufk.reserve(normalk);
_spacebase->getKeys(elep, bufk);
for (int i = 0; i < bufk.size(); i++){
if ((*_filter)(bufk[i]))
vals.push_back(valsd[i]);
}
}
template <class T,class F> void FilteredFunctionSpace<T,F>::gradf(MElement *ele, double u, double v, double w, std::vector<GradType> &grads) const
{
// We need parent parameters
MElement *elep;
if (ele->getParent()) elep = ele->getParent();
else elep = ele;
// Get space base gradsd
std::vector<GradType> gradsd;
_spacebase->gradf(elep, u, v, w, gradsd);
// Get numkeys
int normalk = _spacebase->getNumKeys(elep);
std::vector<Dof> bufk;
bufk.reserve(normalk);
_spacebase->getKeys(elep, bufk);
for (int i = 0; i < bufk.size(); i++){
if ((*_filter)(bufk[i]))
grads.push_back(gradsd[i]);
}
}
template <class T,class F> int FilteredFunctionSpace<T,F>::getNumKeys(MElement *ele) const
{
MElement *elep;
if (ele->getParent()) elep = ele->getParent();
else elep = ele;
int nbdofs = 0;
int normalk = _spacebase->getNumKeys(elep);
std::vector<Dof> bufk;
bufk.reserve(normalk);
_spacebase->getKeys(elep, bufk);
for (int i = 0; i < bufk.size(); i++){
if ((*_filter)(bufk[i]))
nbdofs = nbdofs + 1;
}
return nbdofs;
}
template <class T, class F> void FilteredFunctionSpace<T, F>::getKeys(MElement *ele, std::vector<Dof> &keys) const
{
MElement *elep;
if (ele->getParent()) elep = ele->getParent();
else elep = ele;
int normalk = _spacebase->getNumKeys(elep);
std::vector<Dof> bufk;
bufk.reserve(normalk);
_spacebase->getKeys(elep, bufk);
for (int i = 0; i < bufk.size(); i++){
if ((*_filter)(bufk[i]))
keys.push_back(bufk[i]);
}
}
#endif
|