This file is indexed.

/usr/include/gmsh/meshGFaceDelaunayInsertion.h is in libgmsh-dev 3.0.6+dfsg1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
// Gmsh - Copyright (C) 1997-2017 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to the public mailing list <gmsh@onelab.info>.

#ifndef _MESH_GFACE_DELAUNAY_INSERTIONFACE_H_
#define _MESH_GFACE_DELAUNAY_INSERTIONFACE_H_

#include "MTriangle.h"
#include "MQuadrangle.h"
#include "STensor3.h"
#include "GEntity.h"
#include "MFace.h"
#include <list>
#include <set>
#include <map>

class GModel;
class GFace;
class BDS_Mesh;
class BDS_Point;

struct bidimMeshData
{
  std::map<MVertex*,int> indices;
  std::vector<double> Us, Vs, vSizes, vSizesBGM;
  std::vector<SMetric3> vMetricsBGM;
  std::map<MVertex* , MVertex*>* equivalence;
  std::map<MVertex*, SPoint2> * parametricCoordinates;
  std::set<MEdge,Less_Edge> internalEdges; // embedded edges
  //  std::set<MVertex*> internalVertices; // embedded vertices
  inline void addVertex (MVertex* mv, double u, double v, double size, double sizeBGM){
    int index = Us.size();
    if (mv->onWhat()->dim() == 2)mv->setIndex(index);
    else indices[mv] = index;
    if (parametricCoordinates){
      std::map<MVertex*, SPoint2>::iterator it =  parametricCoordinates->find(mv);
      if (it != parametricCoordinates->end()){
	u = it->second.x();
	v = it->second.y();
	//	printf("%g %g\n",u,v);
      }
    }
    Us.push_back(u);
    Vs.push_back(v);
    vSizes.push_back(size);
    vSizesBGM.push_back(sizeBGM);
  }
  inline int getIndex (MVertex *mv) {
    if (mv->onWhat()->dim() == 2)return mv->getIndex();
    return indices[mv];
  }
  inline MVertex * equivalent (MVertex *v1) const {
    if (equivalence){
      std::map<MVertex* , MVertex*>::iterator it = equivalence->find(v1);
      if (it == equivalence->end())return 0;
      return it->second;
    }
    return 0;
  }
  bidimMeshData (std::map<MVertex* , MVertex*>* e = 0, std::map<MVertex*, SPoint2> *p = 0) : equivalence(e), parametricCoordinates(p)
  {
  }
};


void buildMetric(GFace *gf, double *uv, double *metric);
int inCircumCircleAniso(GFace *gf, double *p1, double *p2, double *p3,
                        double *p4, double *metric);
int inCircumCircleAniso(GFace *gf, MTriangle *base, const double *uv,
                        const double *metric, bidimMeshData & data);
void circumCenterMetric(double *pa, double *pb, double *pc, const double *metric,
                        double *x, double &Radius2);
void circumCenterMetric(MTriangle *base, const double *metric, bidimMeshData & data,
                        double *x, double &Radius2);
bool circumCenterMetricInTriangle(MTriangle *base, const double *metric, bidimMeshData &data);
bool invMapUV(MTriangle *t, double *p, bidimMeshData &data,
              double *uv, double tol);

class MTri3
{
 protected :
  bool deleted;
  double circum_radius;
  MTriangle *base;
  MTri3 *neigh[3];

 public :
  static int radiusNorm; // 2 is euclidian norm, -1 is infinite norm  , 3 quality
  bool isDeleted() const { return deleted; }
  void forceRadius(double r) { circum_radius = r; }
  inline double getRadius() const { return circum_radius; }
  inline MVertex *otherSide (int i){
    MTri3 *n = neigh[i];
    if (!n)return 0;
    MVertex *v1 = base->getVertex((i+2)%3);
    MVertex *v2 = base->getVertex(i);
    for (int j=0;j<3;j++)
      if (n->tri()->getVertex(j) != v1 && n->tri()->getVertex(j) != v2)return n->tri()->getVertex(j);
    return 0;
  }
  MTri3(MTriangle *t, double lc, SMetric3 *m = 0, bidimMeshData * data = 0, GFace *gf = 0);
  inline void setTri(MTriangle *t) { base = t; }
  inline MTriangle *tri() const { return base; }
  inline void  setNeigh(int iN , MTri3 *n) { neigh[iN] = n; }
  inline MTri3 *getNeigh(int iN ) const { return neigh[iN]; }
  int inCircumCircle(const double *p) const;
  inline int inCircumCircle(double x, double y) const
  {
    const double p[2] = {x, y};
    return inCircumCircle(p);
  }
  inline int inCircumCircle(const MVertex * v) const
  {
    return inCircumCircle(v->x(), v->y());
  }
  inline void setDeleted(bool d){ deleted = d; }
  inline bool assertNeigh() const
  {
    if(deleted) return true;
    for(int i = 0; i < 3; i++)
      if(neigh[i] && (neigh[i]->isNeigh(this) == false)) return false;
    return true;
  }
  inline bool isNeigh(const MTri3 *t) const
  {
    for(int i = 0; i < 3; i++)
      if(neigh[i] == t) return true;
    return false;
  }
};

class compareTri3Ptr
{
 public:
  inline bool operator () (const MTri3 *a, const MTri3 *b)  const
  {
    if(a->getRadius() > b->getRadius()) return true;
    if(a->getRadius() < b->getRadius()) return false;
    Less_Face lf;
    return lf(a->tri()->getFace(0), b->tri()->getFace(0));
  }
};

void connectTriangles(std::list<MTri3*> &);
void connectTriangles(std::vector<MTri3*> &);
void connectTriangles(std::set<MTri3*,compareTri3Ptr> &AllTris);
void bowyerWatson(GFace *gf, int MAXPNT= 1000000000,
		  std::map<MVertex* , MVertex*>* equivalence= 0,
		  std::map<MVertex*, SPoint2> * parametricCoordinates= 0);
void bowyerWatsonFrontal(GFace *gf,
		  std::map<MVertex* , MVertex*>* equivalence= 0,
		  std::map<MVertex*, SPoint2> * parametricCoordinates= 0);
void bowyerWatsonFrontalLayers(GFace *gf, bool quad,
		  std::map<MVertex* , MVertex*>* equivalence= 0,
		  std::map<MVertex*, SPoint2> * parametricCoordinates= 0);
void bowyerWatsonParallelograms(GFace *gf,
		  std::map<MVertex* , MVertex*>* equivalence= 0,
		  std::map<MVertex*, SPoint2> * parametricCoordinates= 0);
void bowyerWatsonParallelogramsConstrained(GFace *gf,
		  std::set<MVertex*> constr_vertices,
		  std::map<MVertex* , MVertex*>* equivalence= 0,
		  std::map<MVertex*, SPoint2> * parametricCoordinates= 0);
void buildBackGroundMesh (GFace *gf,
		  std::map<MVertex* , MVertex*>* equivalence= 0,
		  std::map<MVertex*, SPoint2> * parametricCoordinates= 0);

void delaunayMeshIn2D(std::vector<MVertex*> &,
		      std::vector<MTriangle*> &,
                      bool removeBox = true,
		      std::vector<MEdge> *edgesToRecover = 0,
                      bool hilbertSort = true);

struct edgeXface
{
  MVertex *v[2];
  MTri3 * t1;
  int i1;
  edgeXface(MTri3 *_t, int iFac) : t1(_t), i1(iFac)
  {
    v[0] = t1->tri()->getVertex(iFac == 0 ? 2 : iFac-1);
    v[1] = t1->tri()->getVertex(iFac);
    if (v[0]->getNum() > v[1]->getNum())
      {
	MVertex *tmp = v[0];
	v[0] = v[1];
	v[1] = tmp;
      }
  }
  inline bool operator < ( const edgeXface &other) const
  {
    if(v[0]->getNum() < other.v[0]->getNum()) return true;
    if(v[0]->getNum() > other.v[0]->getNum()) return false;
    if(v[1]->getNum() < other.v[1]->getNum()) return true;
    return false;
  }
  inline bool operator == ( const edgeXface &other) const
  {
    if(v[0]->getNum() == other.v[0]->getNum() && v[1]->getNum() == other.v[1]->getNum()) return true;
    return false;
  }
};

#endif