/usr/share/ada/adainclude/gnatvsn/repinfo.adb is in libgnatvsn7-dev 7.3.0-16ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 | ------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- R E P I N F O --
-- --
-- B o d y --
-- --
-- Copyright (C) 1999-2016, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Alloc; use Alloc;
with Atree; use Atree;
with Casing; use Casing;
with Debug; use Debug;
with Einfo; use Einfo;
with Lib; use Lib;
with Namet; use Namet;
with Nlists; use Nlists;
with Opt; use Opt;
with Output; use Output;
with Sem_Aux; use Sem_Aux;
with Sinfo; use Sinfo;
with Sinput; use Sinput;
with Snames; use Snames;
with Stand; use Stand;
with Stringt; use Stringt;
with Table; use Table;
with Uname; use Uname;
with Urealp; use Urealp;
with Ada.Unchecked_Conversion;
package body Repinfo is
SSU : constant := 8;
-- Value for Storage_Unit, we do not want to get this from TTypes, since
-- this introduces problematic dependencies in ASIS, and in any case this
-- value is assumed to be 8 for the implementation of the DDA.
---------------------------------------
-- Representation of gcc Expressions --
---------------------------------------
-- This table is used only if Frontend_Layout_On_Target is False, so gigi
-- lays out dynamic size/offset fields using encoded gcc expressions.
-- A table internal to this unit is used to hold the values of back
-- annotated expressions. This table is written out by -gnatt and read
-- back in for ASIS processing.
-- Node values are stored as Uint values using the negative of the node
-- index in this table. Constants appear as non-negative Uint values.
type Exp_Node is record
Expr : TCode;
Op1 : Node_Ref_Or_Val;
Op2 : Node_Ref_Or_Val;
Op3 : Node_Ref_Or_Val;
end record;
-- The following representation clause ensures that the above record
-- has no holes. We do this so that when instances of this record are
-- written by Tree_Gen, we do not write uninitialized values to the file.
for Exp_Node use record
Expr at 0 range 0 .. 31;
Op1 at 4 range 0 .. 31;
Op2 at 8 range 0 .. 31;
Op3 at 12 range 0 .. 31;
end record;
for Exp_Node'Size use 16 * 8;
-- This ensures that we did not leave out any fields
package Rep_Table is new Table.Table (
Table_Component_Type => Exp_Node,
Table_Index_Type => Nat,
Table_Low_Bound => 1,
Table_Initial => Alloc.Rep_Table_Initial,
Table_Increment => Alloc.Rep_Table_Increment,
Table_Name => "BE_Rep_Table");
--------------------------------------------------------------
-- Representation of Front-End Dynamic Size/Offset Entities --
--------------------------------------------------------------
package Dynamic_SO_Entity_Table is new Table.Table (
Table_Component_Type => Entity_Id,
Table_Index_Type => Nat,
Table_Low_Bound => 1,
Table_Initial => Alloc.Rep_Table_Initial,
Table_Increment => Alloc.Rep_Table_Increment,
Table_Name => "FE_Rep_Table");
Unit_Casing : Casing_Type;
-- Identifier casing for current unit. This is set by List_Rep_Info for
-- each unit, before calling subprograms which may read it.
Need_Blank_Line : Boolean;
-- Set True if a blank line is needed before outputting any information for
-- the current entity. Set True when a new entity is processed, and false
-- when the blank line is output.
-----------------------
-- Local Subprograms --
-----------------------
function Back_End_Layout return Boolean;
-- Test for layout mode, True = back end, False = front end. This function
-- is used rather than checking the configuration parameter because we do
-- not want Repinfo to depend on Targparm (for ASIS)
procedure Blank_Line;
-- Called before outputting anything for an entity. Ensures that
-- a blank line precedes the output for a particular entity.
procedure List_Entities
(Ent : Entity_Id;
Bytes_Big_Endian : Boolean;
In_Subprogram : Boolean := False);
-- This procedure lists the entities associated with the entity E, starting
-- with the First_Entity and using the Next_Entity link. If a nested
-- package is found, entities within the package are recursively processed.
-- When recursing within a subprogram body, Is_Subprogram suppresses
-- duplicate information about signature.
procedure List_Name (Ent : Entity_Id);
-- List name of entity Ent in appropriate case. The name is listed with
-- full qualification up to but not including the compilation unit name.
procedure List_Array_Info (Ent : Entity_Id; Bytes_Big_Endian : Boolean);
-- List representation info for array type Ent
procedure List_Linker_Section (Ent : Entity_Id);
-- List linker section for Ent (caller has checked that Ent is an entity
-- for which the Linker_Section_Pragma field is defined).
procedure List_Mechanisms (Ent : Entity_Id);
-- List mechanism information for parameters of Ent, which is subprogram,
-- subprogram type, or an entry or entry family.
procedure List_Object_Info (Ent : Entity_Id);
-- List representation info for object Ent
procedure List_Record_Info (Ent : Entity_Id; Bytes_Big_Endian : Boolean);
-- List representation info for record type Ent
procedure List_Scalar_Storage_Order
(Ent : Entity_Id;
Bytes_Big_Endian : Boolean);
-- List scalar storage order information for record or array type Ent.
-- Also includes bit order information for record types, if necessary.
procedure List_Type_Info (Ent : Entity_Id);
-- List type info for type Ent
function Rep_Not_Constant (Val : Node_Ref_Or_Val) return Boolean;
-- Returns True if Val represents a variable value, and False if it
-- represents a value that is fixed at compile time.
procedure Spaces (N : Natural);
-- Output given number of spaces
procedure Write_Info_Line (S : String);
-- Routine to write a line to Repinfo output file. This routine is passed
-- as a special output procedure to Output.Set_Special_Output. Note that
-- Write_Info_Line is called with an EOL character at the end of each line,
-- as per the Output spec, but the internal call to the appropriate routine
-- in Osint requires that the end of line sequence be stripped off.
procedure Write_Mechanism (M : Mechanism_Type);
-- Writes symbolic string for mechanism represented by M
procedure Write_Val (Val : Node_Ref_Or_Val; Paren : Boolean := False);
-- Given a representation value, write it out. No_Uint values or values
-- dependent on discriminants are written as two question marks. If the
-- flag Paren is set, then the output is surrounded in parentheses if it is
-- other than a simple value.
---------------------
-- Back_End_Layout --
---------------------
function Back_End_Layout return Boolean is
begin
-- We have back end layout if the back end has made any entries in the
-- table of GCC expressions, otherwise we have front end layout.
return Rep_Table.Last > 0;
end Back_End_Layout;
----------------
-- Blank_Line --
----------------
procedure Blank_Line is
begin
if Need_Blank_Line then
Write_Eol;
Need_Blank_Line := False;
end if;
end Blank_Line;
------------------------
-- Create_Discrim_Ref --
------------------------
function Create_Discrim_Ref (Discr : Entity_Id) return Node_Ref is
begin
return Create_Node
(Expr => Discrim_Val,
Op1 => Discriminant_Number (Discr));
end Create_Discrim_Ref;
---------------------------
-- Create_Dynamic_SO_Ref --
---------------------------
function Create_Dynamic_SO_Ref (E : Entity_Id) return Dynamic_SO_Ref is
begin
Dynamic_SO_Entity_Table.Append (E);
return UI_From_Int (-Dynamic_SO_Entity_Table.Last);
end Create_Dynamic_SO_Ref;
-----------------
-- Create_Node --
-----------------
function Create_Node
(Expr : TCode;
Op1 : Node_Ref_Or_Val;
Op2 : Node_Ref_Or_Val := No_Uint;
Op3 : Node_Ref_Or_Val := No_Uint) return Node_Ref
is
begin
Rep_Table.Append (
(Expr => Expr,
Op1 => Op1,
Op2 => Op2,
Op3 => Op3));
return UI_From_Int (-Rep_Table.Last);
end Create_Node;
---------------------------
-- Get_Dynamic_SO_Entity --
---------------------------
function Get_Dynamic_SO_Entity (U : Dynamic_SO_Ref) return Entity_Id is
begin
return Dynamic_SO_Entity_Table.Table (-UI_To_Int (U));
end Get_Dynamic_SO_Entity;
-----------------------
-- Is_Dynamic_SO_Ref --
-----------------------
function Is_Dynamic_SO_Ref (U : SO_Ref) return Boolean is
begin
return U < Uint_0;
end Is_Dynamic_SO_Ref;
----------------------
-- Is_Static_SO_Ref --
----------------------
function Is_Static_SO_Ref (U : SO_Ref) return Boolean is
begin
return U >= Uint_0;
end Is_Static_SO_Ref;
---------
-- lgx --
---------
procedure lgx (U : Node_Ref_Or_Val) is
begin
List_GCC_Expression (U);
Write_Eol;
end lgx;
----------------------
-- List_Array_Info --
----------------------
procedure List_Array_Info (Ent : Entity_Id; Bytes_Big_Endian : Boolean) is
begin
List_Type_Info (Ent);
Write_Str ("for ");
List_Name (Ent);
Write_Str ("'Component_Size use ");
Write_Val (Component_Size (Ent));
Write_Line (";");
List_Scalar_Storage_Order (Ent, Bytes_Big_Endian);
end List_Array_Info;
-------------------
-- List_Entities --
-------------------
procedure List_Entities
(Ent : Entity_Id;
Bytes_Big_Endian : Boolean;
In_Subprogram : Boolean := False)
is
Body_E : Entity_Id;
E : Entity_Id;
function Find_Declaration (E : Entity_Id) return Node_Id;
-- Utility to retrieve declaration node for entity in the
-- case of package bodies and subprograms.
----------------------
-- Find_Declaration --
----------------------
function Find_Declaration (E : Entity_Id) return Node_Id is
Decl : Node_Id;
begin
Decl := Parent (E);
while Present (Decl)
and then Nkind (Decl) /= N_Package_Body
and then Nkind (Decl) /= N_Subprogram_Declaration
and then Nkind (Decl) /= N_Subprogram_Body
loop
Decl := Parent (Decl);
end loop;
return Decl;
end Find_Declaration;
-- Start of processing for List_Entities
begin
-- List entity if we have one, and it is not a renaming declaration.
-- For renamings, we don't get proper information, and really it makes
-- sense to restrict the output to the renamed entity.
if Present (Ent)
and then Nkind (Declaration_Node (Ent)) not in N_Renaming_Declaration
then
-- If entity is a subprogram and we are listing mechanisms,
-- then we need to list mechanisms for this entity. We skip this
-- if it is a nested subprogram, as the information has already
-- been produced when listing the enclosing scope.
if List_Representation_Info_Mechanisms
and then (Is_Subprogram (Ent)
or else Ekind (Ent) = E_Entry
or else Ekind (Ent) = E_Entry_Family)
and then not In_Subprogram
then
Need_Blank_Line := True;
List_Mechanisms (Ent);
end if;
E := First_Entity (Ent);
while Present (E) loop
Need_Blank_Line := True;
-- We list entities that come from source (excluding private or
-- incomplete types or deferred constants, where we will list the
-- info for the full view). If debug flag A is set, then all
-- entities are listed
if (Comes_From_Source (E)
and then not Is_Incomplete_Or_Private_Type (E)
and then not (Ekind (E) = E_Constant
and then Present (Full_View (E))))
or else Debug_Flag_AA
then
if Is_Subprogram (E) then
List_Linker_Section (E);
if List_Representation_Info_Mechanisms then
List_Mechanisms (E);
end if;
-- Recurse into entities local to subprogram
List_Entities (E, Bytes_Big_Endian, True);
elsif Ekind (E) in Formal_Kind and then In_Subprogram then
null;
elsif Ekind_In (E, E_Entry,
E_Entry_Family,
E_Subprogram_Type)
then
if List_Representation_Info_Mechanisms then
List_Mechanisms (E);
end if;
elsif Is_Record_Type (E) then
if List_Representation_Info >= 1 then
List_Record_Info (E, Bytes_Big_Endian);
end if;
List_Linker_Section (E);
elsif Is_Array_Type (E) then
if List_Representation_Info >= 1 then
List_Array_Info (E, Bytes_Big_Endian);
end if;
List_Linker_Section (E);
elsif Is_Type (E) then
if List_Representation_Info >= 2 then
List_Type_Info (E);
List_Linker_Section (E);
end if;
elsif Ekind_In (E, E_Variable, E_Constant) then
if List_Representation_Info >= 2 then
List_Object_Info (E);
List_Linker_Section (E);
end if;
elsif Ekind (E) = E_Loop_Parameter or else Is_Formal (E) then
if List_Representation_Info >= 2 then
List_Object_Info (E);
end if;
end if;
-- Recurse into nested package, but not if they are package
-- renamings (in particular renamings of the enclosing package,
-- as for some Java bindings and for generic instances).
if Ekind (E) = E_Package then
if No (Renamed_Object (E)) then
List_Entities (E, Bytes_Big_Endian);
end if;
-- Recurse into bodies
elsif Ekind_In (E, E_Protected_Type,
E_Task_Type,
E_Subprogram_Body,
E_Package_Body,
E_Task_Body,
E_Protected_Body)
then
List_Entities (E, Bytes_Big_Endian);
-- Recurse into blocks
elsif Ekind (E) = E_Block then
List_Entities (E, Bytes_Big_Endian);
end if;
end if;
E := Next_Entity (E);
end loop;
-- For a package body, the entities of the visible subprograms are
-- declared in the corresponding spec. Iterate over its entities in
-- order to handle properly the subprogram bodies. Skip bodies in
-- subunits, which are listed independently.
if Ekind (Ent) = E_Package_Body
and then Present (Corresponding_Spec (Find_Declaration (Ent)))
then
E := First_Entity (Corresponding_Spec (Find_Declaration (Ent)));
while Present (E) loop
if Is_Subprogram (E)
and then
Nkind (Find_Declaration (E)) = N_Subprogram_Declaration
then
Body_E := Corresponding_Body (Find_Declaration (E));
if Present (Body_E)
and then
Nkind (Parent (Find_Declaration (Body_E))) /= N_Subunit
then
List_Entities (Body_E, Bytes_Big_Endian);
end if;
end if;
Next_Entity (E);
end loop;
end if;
end if;
end List_Entities;
-------------------------
-- List_GCC_Expression --
-------------------------
procedure List_GCC_Expression (U : Node_Ref_Or_Val) is
procedure Print_Expr (Val : Node_Ref_Or_Val);
-- Internal recursive procedure to print expression
----------------
-- Print_Expr --
----------------
procedure Print_Expr (Val : Node_Ref_Or_Val) is
begin
if Val >= 0 then
UI_Write (Val, Decimal);
else
declare
Node : Exp_Node renames Rep_Table.Table (-UI_To_Int (Val));
procedure Binop (S : String);
-- Output text for binary operator with S being operator name
-----------
-- Binop --
-----------
procedure Binop (S : String) is
begin
Write_Char ('(');
Print_Expr (Node.Op1);
Write_Str (S);
Print_Expr (Node.Op2);
Write_Char (')');
end Binop;
-- Start of processing for Print_Expr
begin
case Node.Expr is
when Cond_Expr =>
Write_Str ("(if ");
Print_Expr (Node.Op1);
Write_Str (" then ");
Print_Expr (Node.Op2);
Write_Str (" else ");
Print_Expr (Node.Op3);
Write_Str (" end)");
when Plus_Expr =>
Binop (" + ");
when Minus_Expr =>
Binop (" - ");
when Mult_Expr =>
Binop (" * ");
when Trunc_Div_Expr =>
Binop (" /t ");
when Ceil_Div_Expr =>
Binop (" /c ");
when Floor_Div_Expr =>
Binop (" /f ");
when Trunc_Mod_Expr =>
Binop (" modt ");
when Floor_Mod_Expr =>
Binop (" modf ");
when Ceil_Mod_Expr =>
Binop (" modc ");
when Exact_Div_Expr =>
Binop (" /e ");
when Negate_Expr =>
Write_Char ('-');
Print_Expr (Node.Op1);
when Min_Expr =>
Binop (" min ");
when Max_Expr =>
Binop (" max ");
when Abs_Expr =>
Write_Str ("abs ");
Print_Expr (Node.Op1);
when Truth_Andif_Expr =>
Binop (" and if ");
when Truth_Orif_Expr =>
Binop (" or if ");
when Truth_And_Expr =>
Binop (" and ");
when Truth_Or_Expr =>
Binop (" or ");
when Truth_Xor_Expr =>
Binop (" xor ");
when Truth_Not_Expr =>
Write_Str ("not ");
Print_Expr (Node.Op1);
when Bit_And_Expr =>
Binop (" & ");
when Lt_Expr =>
Binop (" < ");
when Le_Expr =>
Binop (" <= ");
when Gt_Expr =>
Binop (" > ");
when Ge_Expr =>
Binop (" >= ");
when Eq_Expr =>
Binop (" == ");
when Ne_Expr =>
Binop (" != ");
when Discrim_Val =>
Write_Char ('#');
UI_Write (Node.Op1);
end case;
end;
end if;
end Print_Expr;
-- Start of processing for List_GCC_Expression
begin
if U = No_Uint then
Write_Str ("??");
else
Print_Expr (U);
end if;
end List_GCC_Expression;
-------------------------
-- List_Linker_Section --
-------------------------
procedure List_Linker_Section (Ent : Entity_Id) is
Arg : Node_Id;
begin
if Present (Linker_Section_Pragma (Ent)) then
Write_Str ("pragma Linker_Section (");
List_Name (Ent);
Write_Str (", """);
Arg :=
Last (Pragma_Argument_Associations (Linker_Section_Pragma (Ent)));
if Nkind (Arg) = N_Pragma_Argument_Association then
Arg := Expression (Arg);
end if;
pragma Assert (Nkind (Arg) = N_String_Literal);
String_To_Name_Buffer (Strval (Arg));
Write_Str (Name_Buffer (1 .. Name_Len));
Write_Str (""");");
Write_Eol;
end if;
end List_Linker_Section;
---------------------
-- List_Mechanisms --
---------------------
procedure List_Mechanisms (Ent : Entity_Id) is
Plen : Natural;
Form : Entity_Id;
begin
Blank_Line;
case Ekind (Ent) is
when E_Function =>
Write_Str ("function ");
when E_Operator =>
Write_Str ("operator ");
when E_Procedure =>
Write_Str ("procedure ");
when E_Subprogram_Type =>
Write_Str ("type ");
when E_Entry
| E_Entry_Family
=>
Write_Str ("entry ");
when others =>
raise Program_Error;
end case;
Get_Unqualified_Decoded_Name_String (Chars (Ent));
Write_Str (Name_Buffer (1 .. Name_Len));
Write_Str (" declared at ");
Write_Location (Sloc (Ent));
Write_Eol;
Write_Str (" convention : ");
case Convention (Ent) is
when Convention_Ada =>
Write_Line ("Ada");
when Convention_Ada_Pass_By_Copy =>
Write_Line ("Ada_Pass_By_Copy");
when Convention_Ada_Pass_By_Reference =>
Write_Line ("Ada_Pass_By_Reference");
when Convention_Intrinsic =>
Write_Line ("Intrinsic");
when Convention_Entry =>
Write_Line ("Entry");
when Convention_Protected =>
Write_Line ("Protected");
when Convention_Assembler =>
Write_Line ("Assembler");
when Convention_C =>
Write_Line ("C");
when Convention_COBOL =>
Write_Line ("COBOL");
when Convention_CPP =>
Write_Line ("C++");
when Convention_Fortran =>
Write_Line ("Fortran");
when Convention_Stdcall =>
Write_Line ("Stdcall");
when Convention_Stubbed =>
Write_Line ("Stubbed");
end case;
-- Find max length of formal name
Plen := 0;
Form := First_Formal (Ent);
while Present (Form) loop
Get_Unqualified_Decoded_Name_String (Chars (Form));
if Name_Len > Plen then
Plen := Name_Len;
end if;
Next_Formal (Form);
end loop;
-- Output formals and mechanisms
Form := First_Formal (Ent);
while Present (Form) loop
Get_Unqualified_Decoded_Name_String (Chars (Form));
while Name_Len <= Plen loop
Name_Len := Name_Len + 1;
Name_Buffer (Name_Len) := ' ';
end loop;
Write_Str (" ");
Write_Str (Name_Buffer (1 .. Plen + 1));
Write_Str (": passed by ");
Write_Mechanism (Mechanism (Form));
Write_Eol;
Next_Formal (Form);
end loop;
if Etype (Ent) /= Standard_Void_Type then
Write_Str (" returns by ");
Write_Mechanism (Mechanism (Ent));
Write_Eol;
end if;
end List_Mechanisms;
---------------
-- List_Name --
---------------
procedure List_Name (Ent : Entity_Id) is
begin
if not Is_Compilation_Unit (Scope (Ent)) then
List_Name (Scope (Ent));
Write_Char ('.');
end if;
Get_Unqualified_Decoded_Name_String (Chars (Ent));
Set_Casing (Unit_Casing);
Write_Str (Name_Buffer (1 .. Name_Len));
end List_Name;
---------------------
-- List_Object_Info --
---------------------
procedure List_Object_Info (Ent : Entity_Id) is
begin
Blank_Line;
Write_Str ("for ");
List_Name (Ent);
Write_Str ("'Size use ");
Write_Val (Esize (Ent));
Write_Line (";");
Write_Str ("for ");
List_Name (Ent);
Write_Str ("'Alignment use ");
Write_Val (Alignment (Ent));
Write_Line (";");
end List_Object_Info;
----------------------
-- List_Record_Info --
----------------------
procedure List_Record_Info (Ent : Entity_Id; Bytes_Big_Endian : Boolean) is
Comp : Entity_Id;
Cfbit : Uint;
Sunit : Uint;
Max_Name_Length : Natural;
Max_Suni_Length : Natural;
begin
Blank_Line;
List_Type_Info (Ent);
Write_Str ("for ");
List_Name (Ent);
Write_Line (" use record");
-- First loop finds out max line length and max starting position
-- length, for the purpose of lining things up nicely.
Max_Name_Length := 0;
Max_Suni_Length := 0;
Comp := First_Component_Or_Discriminant (Ent);
while Present (Comp) loop
-- Skip discriminant in unchecked union (since it is not there!)
if Ekind (Comp) = E_Discriminant
and then Is_Unchecked_Union (Ent)
then
null;
-- All other cases
else
Get_Decoded_Name_String (Chars (Comp));
Max_Name_Length := Natural'Max (Max_Name_Length, Name_Len);
Cfbit := Component_Bit_Offset (Comp);
if Rep_Not_Constant (Cfbit) then
UI_Image_Length := 2;
else
-- Complete annotation in case not done
Set_Normalized_Position (Comp, Cfbit / SSU);
Set_Normalized_First_Bit (Comp, Cfbit mod SSU);
Sunit := Cfbit / SSU;
UI_Image (Sunit);
end if;
-- If the record is not packed, then we know that all fields
-- whose position is not specified have a starting normalized
-- bit position of zero.
if Unknown_Normalized_First_Bit (Comp)
and then not Is_Packed (Ent)
then
Set_Normalized_First_Bit (Comp, Uint_0);
end if;
Max_Suni_Length :=
Natural'Max (Max_Suni_Length, UI_Image_Length);
end if;
Next_Component_Or_Discriminant (Comp);
end loop;
-- Second loop does actual output based on those values
Comp := First_Component_Or_Discriminant (Ent);
while Present (Comp) loop
-- Skip discriminant in unchecked union (since it is not there!)
if Ekind (Comp) = E_Discriminant
and then Is_Unchecked_Union (Ent)
then
goto Continue;
end if;
-- All other cases
declare
Esiz : constant Uint := Esize (Comp);
Bofs : constant Uint := Component_Bit_Offset (Comp);
Npos : constant Uint := Normalized_Position (Comp);
Fbit : constant Uint := Normalized_First_Bit (Comp);
Lbit : Uint;
begin
Write_Str (" ");
Get_Decoded_Name_String (Chars (Comp));
Set_Casing (Unit_Casing);
Write_Str (Name_Buffer (1 .. Name_Len));
for J in 1 .. Max_Name_Length - Name_Len loop
Write_Char (' ');
end loop;
Write_Str (" at ");
if Known_Static_Normalized_Position (Comp) then
UI_Image (Npos);
Spaces (Max_Suni_Length - UI_Image_Length);
Write_Str (UI_Image_Buffer (1 .. UI_Image_Length));
elsif Known_Component_Bit_Offset (Comp)
and then List_Representation_Info = 3
then
Spaces (Max_Suni_Length - 2);
Write_Str ("bit offset");
Write_Val (Bofs, Paren => True);
Write_Str (" size in bits = ");
Write_Val (Esiz, Paren => True);
Write_Eol;
goto Continue;
elsif Known_Normalized_Position (Comp)
and then List_Representation_Info = 3
then
Spaces (Max_Suni_Length - 2);
Write_Val (Npos);
else
-- For the packed case, we don't know the bit positions if we
-- don't know the starting position.
if Is_Packed (Ent) then
Write_Line ("?? range ? .. ??;");
goto Continue;
-- Otherwise we can continue
else
Write_Str ("??");
end if;
end if;
Write_Str (" range ");
UI_Write (Fbit);
Write_Str (" .. ");
-- Allowing Uint_0 here is an annoying special case. Really this
-- should be a fine Esize value but currently it means unknown,
-- except that we know after gigi has back annotated that a size
-- of zero is real, since otherwise gigi back annotates using
-- No_Uint as the value to indicate unknown).
if (Esize (Comp) = Uint_0 or else Known_Static_Esize (Comp))
and then Known_Static_Normalized_First_Bit (Comp)
then
Lbit := Fbit + Esiz - 1;
if Lbit < 10 then
Write_Char (' ');
end if;
UI_Write (Lbit);
-- The test for Esize (Comp) not Uint_0 here is an annoying
-- special case. Officially a value of zero for Esize means
-- unknown, but here we use the fact that we know that gigi
-- annotates Esize with No_Uint, not Uint_0. Really everyone
-- should use No_Uint???
elsif List_Representation_Info < 3
or else (Esize (Comp) /= Uint_0 and then Unknown_Esize (Comp))
then
Write_Str ("??");
-- List_Representation >= 3 and Known_Esize (Comp)
else
Write_Val (Esiz, Paren => True);
-- If in front end layout mode, then dynamic size is stored
-- in storage units, so renormalize for output
if not Back_End_Layout then
Write_Str (" * ");
Write_Int (SSU);
end if;
-- Add appropriate first bit offset
if Fbit = 0 then
Write_Str (" - 1");
elsif Fbit = 1 then
null;
else
Write_Str (" + ");
Write_Int (UI_To_Int (Fbit) - 1);
end if;
end if;
Write_Line (";");
end;
<<Continue>>
Next_Component_Or_Discriminant (Comp);
end loop;
Write_Line ("end record;");
List_Scalar_Storage_Order (Ent, Bytes_Big_Endian);
end List_Record_Info;
-------------------
-- List_Rep_Info --
-------------------
procedure List_Rep_Info (Bytes_Big_Endian : Boolean) is
Col : Nat;
begin
if List_Representation_Info /= 0
or else List_Representation_Info_Mechanisms
then
for U in Main_Unit .. Last_Unit loop
if In_Extended_Main_Source_Unit (Cunit_Entity (U)) then
Unit_Casing := Identifier_Casing (Source_Index (U));
-- Normal case, list to standard output
if not List_Representation_Info_To_File then
Write_Eol;
Write_Str ("Representation information for unit ");
Write_Unit_Name (Unit_Name (U));
Col := Column;
Write_Eol;
for J in 1 .. Col - 1 loop
Write_Char ('-');
end loop;
Write_Eol;
List_Entities (Cunit_Entity (U), Bytes_Big_Endian);
-- List representation information to file
else
Create_Repinfo_File_Access.all
(Get_Name_String (File_Name (Source_Index (U))));
Set_Special_Output (Write_Info_Line'Access);
List_Entities (Cunit_Entity (U), Bytes_Big_Endian);
Set_Special_Output (null);
Close_Repinfo_File_Access.all;
end if;
end if;
end loop;
end if;
end List_Rep_Info;
-------------------------------
-- List_Scalar_Storage_Order --
-------------------------------
procedure List_Scalar_Storage_Order
(Ent : Entity_Id;
Bytes_Big_Endian : Boolean)
is
procedure List_Attr (Attr_Name : String; Is_Reversed : Boolean);
-- Show attribute definition clause for Attr_Name (an endianness
-- attribute), depending on whether or not the endianness is reversed
-- compared to native endianness.
---------------
-- List_Attr --
---------------
procedure List_Attr (Attr_Name : String; Is_Reversed : Boolean) is
begin
Write_Str ("for ");
List_Name (Ent);
Write_Str ("'" & Attr_Name & " use System.");
if Bytes_Big_Endian xor Is_Reversed then
Write_Str ("High");
else
Write_Str ("Low");
end if;
Write_Line ("_Order_First;");
end List_Attr;
List_SSO : constant Boolean :=
Has_Rep_Item (Ent, Name_Scalar_Storage_Order)
or else SSO_Set_Low_By_Default (Ent)
or else SSO_Set_High_By_Default (Ent);
-- Scalar_Storage_Order is displayed if specified explicitly
-- or set by Default_Scalar_Storage_Order.
-- Start of processing for List_Scalar_Storage_Order
begin
-- For record types, list Bit_Order if not default, or if SSO is shown
if Is_Record_Type (Ent)
and then (List_SSO or else Reverse_Bit_Order (Ent))
then
List_Attr ("Bit_Order", Reverse_Bit_Order (Ent));
end if;
-- List SSO if required. If not, then storage is supposed to be in
-- native order.
if List_SSO then
List_Attr ("Scalar_Storage_Order", Reverse_Storage_Order (Ent));
else
pragma Assert (not Reverse_Storage_Order (Ent));
null;
end if;
end List_Scalar_Storage_Order;
--------------------
-- List_Type_Info --
--------------------
procedure List_Type_Info (Ent : Entity_Id) is
begin
Blank_Line;
-- Do not list size info for unconstrained arrays, not meaningful
if Is_Array_Type (Ent) and then not Is_Constrained (Ent) then
null;
else
-- If Esize and RM_Size are the same and known, list as Size. This
-- is a common case, which we may as well list in simple form.
if Esize (Ent) = RM_Size (Ent) then
Write_Str ("for ");
List_Name (Ent);
Write_Str ("'Size use ");
Write_Val (Esize (Ent));
Write_Line (";");
-- For now, temporary case, to be removed when gigi properly back
-- annotates RM_Size, if RM_Size is not set, then list Esize as Size.
-- This avoids odd Object_Size output till we fix things???
elsif Unknown_RM_Size (Ent) then
Write_Str ("for ");
List_Name (Ent);
Write_Str ("'Size use ");
Write_Val (Esize (Ent));
Write_Line (";");
-- Otherwise list size values separately if they are set
else
Write_Str ("for ");
List_Name (Ent);
Write_Str ("'Object_Size use ");
Write_Val (Esize (Ent));
Write_Line (";");
-- Note on following check: The RM_Size of a discrete type can
-- legitimately be set to zero, so a special check is needed.
Write_Str ("for ");
List_Name (Ent);
Write_Str ("'Value_Size use ");
Write_Val (RM_Size (Ent));
Write_Line (";");
end if;
end if;
Write_Str ("for ");
List_Name (Ent);
Write_Str ("'Alignment use ");
Write_Val (Alignment (Ent));
Write_Line (";");
-- Special stuff for fixed-point
if Is_Fixed_Point_Type (Ent) then
-- Write small (always a static constant)
Write_Str ("for ");
List_Name (Ent);
Write_Str ("'Small use ");
UR_Write (Small_Value (Ent));
Write_Line (";");
-- Write range if static
declare
R : constant Node_Id := Scalar_Range (Ent);
begin
if Nkind (Low_Bound (R)) = N_Real_Literal
and then
Nkind (High_Bound (R)) = N_Real_Literal
then
Write_Str ("for ");
List_Name (Ent);
Write_Str ("'Range use ");
UR_Write (Realval (Low_Bound (R)));
Write_Str (" .. ");
UR_Write (Realval (High_Bound (R)));
Write_Line (";");
end if;
end;
end if;
end List_Type_Info;
----------------------
-- Rep_Not_Constant --
----------------------
function Rep_Not_Constant (Val : Node_Ref_Or_Val) return Boolean is
begin
if Val = No_Uint or else Val < 0 then
return True;
else
return False;
end if;
end Rep_Not_Constant;
---------------
-- Rep_Value --
---------------
function Rep_Value
(Val : Node_Ref_Or_Val;
D : Discrim_List) return Uint
is
function B (Val : Boolean) return Uint;
-- Returns Uint_0 for False, Uint_1 for True
function T (Val : Node_Ref_Or_Val) return Boolean;
-- Returns True for 0, False for any non-zero (i.e. True)
function V (Val : Node_Ref_Or_Val) return Uint;
-- Internal recursive routine to evaluate tree
function W (Val : Uint) return Word;
-- Convert Val to Word, assuming Val is always in the Int range. This
-- is a helper function for the evaluation of bitwise expressions like
-- Bit_And_Expr, for which there is no direct support in uintp. Uint
-- values out of the Int range are expected to be seen in such
-- expressions only with overflowing byte sizes around, introducing
-- inherent unreliabilities in computations anyway.
-------
-- B --
-------
function B (Val : Boolean) return Uint is
begin
if Val then
return Uint_1;
else
return Uint_0;
end if;
end B;
-------
-- T --
-------
function T (Val : Node_Ref_Or_Val) return Boolean is
begin
if V (Val) = 0 then
return False;
else
return True;
end if;
end T;
-------
-- V --
-------
function V (Val : Node_Ref_Or_Val) return Uint is
L, R, Q : Uint;
begin
if Val >= 0 then
return Val;
else
declare
Node : Exp_Node renames Rep_Table.Table (-UI_To_Int (Val));
begin
case Node.Expr is
when Cond_Expr =>
if T (Node.Op1) then
return V (Node.Op2);
else
return V (Node.Op3);
end if;
when Plus_Expr =>
return V (Node.Op1) + V (Node.Op2);
when Minus_Expr =>
return V (Node.Op1) - V (Node.Op2);
when Mult_Expr =>
return V (Node.Op1) * V (Node.Op2);
when Trunc_Div_Expr =>
return V (Node.Op1) / V (Node.Op2);
when Ceil_Div_Expr =>
return
UR_Ceiling
(V (Node.Op1) / UR_From_Uint (V (Node.Op2)));
when Floor_Div_Expr =>
return
UR_Floor
(V (Node.Op1) / UR_From_Uint (V (Node.Op2)));
when Trunc_Mod_Expr =>
return V (Node.Op1) rem V (Node.Op2);
when Floor_Mod_Expr =>
return V (Node.Op1) mod V (Node.Op2);
when Ceil_Mod_Expr =>
L := V (Node.Op1);
R := V (Node.Op2);
Q := UR_Ceiling (L / UR_From_Uint (R));
return L - R * Q;
when Exact_Div_Expr =>
return V (Node.Op1) / V (Node.Op2);
when Negate_Expr =>
return -V (Node.Op1);
when Min_Expr =>
return UI_Min (V (Node.Op1), V (Node.Op2));
when Max_Expr =>
return UI_Max (V (Node.Op1), V (Node.Op2));
when Abs_Expr =>
return UI_Abs (V (Node.Op1));
when Truth_Andif_Expr =>
return B (T (Node.Op1) and then T (Node.Op2));
when Truth_Orif_Expr =>
return B (T (Node.Op1) or else T (Node.Op2));
when Truth_And_Expr =>
return B (T (Node.Op1) and then T (Node.Op2));
when Truth_Or_Expr =>
return B (T (Node.Op1) or else T (Node.Op2));
when Truth_Xor_Expr =>
return B (T (Node.Op1) xor T (Node.Op2));
when Truth_Not_Expr =>
return B (not T (Node.Op1));
when Bit_And_Expr =>
L := V (Node.Op1);
R := V (Node.Op2);
return UI_From_Int (Int (W (L) and W (R)));
when Lt_Expr =>
return B (V (Node.Op1) < V (Node.Op2));
when Le_Expr =>
return B (V (Node.Op1) <= V (Node.Op2));
when Gt_Expr =>
return B (V (Node.Op1) > V (Node.Op2));
when Ge_Expr =>
return B (V (Node.Op1) >= V (Node.Op2));
when Eq_Expr =>
return B (V (Node.Op1) = V (Node.Op2));
when Ne_Expr =>
return B (V (Node.Op1) /= V (Node.Op2));
when Discrim_Val =>
declare
Sub : constant Int := UI_To_Int (Node.Op1);
begin
pragma Assert (Sub in D'Range);
return D (Sub);
end;
end case;
end;
end if;
end V;
-------
-- W --
-------
-- We use an unchecked conversion to map Int values to their Word
-- bitwise equivalent, which we could not achieve with a normal type
-- conversion for negative Ints. We want bitwise equivalents because W
-- is used as a helper for bit operators like Bit_And_Expr, and can be
-- called for negative Ints in the context of aligning expressions like
-- X+Align & -Align.
function W (Val : Uint) return Word is
function To_Word is new Ada.Unchecked_Conversion (Int, Word);
begin
return To_Word (UI_To_Int (Val));
end W;
-- Start of processing for Rep_Value
begin
if Val = No_Uint then
return No_Uint;
else
return V (Val);
end if;
end Rep_Value;
------------
-- Spaces --
------------
procedure Spaces (N : Natural) is
begin
for J in 1 .. N loop
Write_Char (' ');
end loop;
end Spaces;
---------------
-- Tree_Read --
---------------
procedure Tree_Read is
begin
Rep_Table.Tree_Read;
end Tree_Read;
----------------
-- Tree_Write --
----------------
procedure Tree_Write is
begin
Rep_Table.Tree_Write;
end Tree_Write;
---------------------
-- Write_Info_Line --
---------------------
procedure Write_Info_Line (S : String) is
begin
Write_Repinfo_Line_Access.all (S (S'First .. S'Last - 1));
end Write_Info_Line;
---------------------
-- Write_Mechanism --
---------------------
procedure Write_Mechanism (M : Mechanism_Type) is
begin
case M is
when 0 =>
Write_Str ("default");
when -1 =>
Write_Str ("copy");
when -2 =>
Write_Str ("reference");
when others =>
raise Program_Error;
end case;
end Write_Mechanism;
---------------
-- Write_Val --
---------------
procedure Write_Val (Val : Node_Ref_Or_Val; Paren : Boolean := False) is
begin
if Rep_Not_Constant (Val) then
if List_Representation_Info < 3 or else Val = No_Uint then
Write_Str ("??");
else
if Back_End_Layout then
Write_Char (' ');
if Paren then
Write_Char ('(');
List_GCC_Expression (Val);
Write_Char (')');
else
List_GCC_Expression (Val);
end if;
Write_Char (' ');
else
if Paren then
Write_Char ('(');
Write_Name_Decoded (Chars (Get_Dynamic_SO_Entity (Val)));
Write_Char (')');
else
Write_Name_Decoded (Chars (Get_Dynamic_SO_Entity (Val)));
end if;
end if;
end if;
else
UI_Write (Val);
end if;
end Write_Val;
end Repinfo;
|