This file is indexed.

/usr/include/gnuastro/dimension.h is in libgnuastro-dev 0.5-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
/*********************************************************************
multidim -- Functions for multi-dimensional operations.
This is part of GNU Astronomy Utilities (Gnuastro) package.

Original author:
     Mohammad Akhlaghi <akhlaghi@gnu.org>
Contributing author(s):
Copyright (C) 2017, Free Software Foundation, Inc.

Gnuastro is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.

Gnuastro is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with Gnuastro. If not, see <http://www.gnu.org/licenses/>.
**********************************************************************/
#ifndef __GAL_MULTIDIM_H__
#define __GAL_MULTIDIM_H__

/* Include other headers if necessary here. Note that other header files
   must be included before the C++ preparations below */
#include <gnuastro/data.h>

/* C++ Preparations */
#undef __BEGIN_C_DECLS
#undef __END_C_DECLS
#ifdef __cplusplus
# define __BEGIN_C_DECLS extern "C" {
# define __END_C_DECLS }
#else
# define __BEGIN_C_DECLS                /* empty */
# define __END_C_DECLS                  /* empty */
#endif
/* End of C++ preparations */

/* Actual header contants (the above were for the Pre-processor). */
__BEGIN_C_DECLS  /* From C++ preparations */





/************************************************************************/
/********************             Info             **********************/
/************************************************************************/
size_t
gal_dimension_total_size(size_t ndim, size_t *dsize);

size_t *
gal_dimension_increment(size_t ndim, size_t *dsize);

size_t
gal_dimension_num_neighbors(size_t ndim);





/************************************************************************/
/********************          Coordinates         **********************/
/************************************************************************/
#define GAL_DIMENSION_FLT_TO_INT(FLT) ( (FLT)-(long)(FLT) > 0.5f  \
                                        ? (long)(FLT)+1 : (long)(FLT) )

void
gal_dimension_add_coords(size_t *c1, size_t *c2, size_t *out, size_t ndim);

size_t
gal_dimension_coord_to_index(size_t ndim, size_t *dsize, size_t *coord);

void
gal_dimension_index_to_coord(size_t index, size_t ndim, size_t *dsize,
                             size_t *coord);





/************************************************************************/
/********************           Distances          **********************/
/************************************************************************/
size_t
gal_dimension_dist_manhattan(size_t *a, size_t *b, size_t ndim);





/************************************************************************/
/********************          Neighbors           **********************/
/************************************************************************/
/* Purpose
   -------

   This macro will allow you to do a fixed operation on the neighbors of an
   element. The identifier for the element is its dimension-agnostic index
   (distance from start of array). It is defined as a macro (and not a
   function) it is often necessary to loop over a very large number of
   pixels/indexs and the number of neighbors differs (in different
   dimensions and on the edges of the image).

   Usage
   -----

   The inputs are:

       `index': The index of the desired point.

       `ndim':  The number of dimensions in the dataset.

       `dsize': The size of the dataset along each dimension (C order).

       `connectivity': The connectivity of the neighbors. This is a single
                integer with a value between `1' and `ndim' (it is
                irrelevant for a 1D dataset). Below, the case for 3D data
                is shown. Each `dn' corresponds to `dinc[n]'. See `dinc'
                below for the `dinc' values.

                   `1': At most ONE addition/subtraction. In 1D: only the
                        first line should be used. In 2D, this is 4
                        connectivity. In 3D all the elements that share an
                        2D-face with the cube at index `i'.

                                       i - d0     i + d0        (1D, 2D & 3D)
                                       i - d1     i + d1        (2D & 3D)
                                       i - d2     i + d2        (3D)

                   `2': At most TWO additions/subtractions. In 2D: 8
                        connectivity. In 3D: all elements that share a 1D
                        edge with the cube at index `i'.

                                  i - d0 - d1     i - d0 + d1   (2D & 3D)
                                  i + d0 - d1     i + d0 + d1   (2D & 3D)
                                  i - d0 - d2     i - d0 + d2   (3D)
                                  i + d0 - d2     i + d0 + d2   (3D)
                                  i - d1 - d2     i - d1 + d2   (3D)
                                  i + d1 - d2     i + d1 + d2   (3D)

                   `3': At most THREE additions/subtractions (only for 3D
                        and higher dimensions). All cubes that share a 0-D
                        vertex with the cube at index `i'.

                             i - d0 - d1 - d2     i - d0 - d1 + d2
                             i - d0 + d1 - d2     i - d0 + d1 + d2
                             i + d0 - d1 - d2     i + d0 - d1 + d2
                             i + d0 + d1 - d2     i + d0 + d1 + d2

        `dinc': An array keeping the length necessary to increment along
                each dimension. You can make this array with the following
                function:

                  size_t *dinc=gal_dimension_increment(ndim, dsize);

                Don't forget to free it afterwards.

        `operation': Any C operation. `nind' is a `size_t' type variable
                that is defined by this macro and will have the index of
                each neighbor. You can use this `nind' for any processing
                that you like on the neighbor. Note that `op' will be
                repeated the number of times there is a neighbor.


   Implementation
   --------------

   To be most efficient (avoid as many `if's as possible), we will start
   parsing the neighbors from the fastest dimension. When-ever the element
   is on the edge of the dataset in any dimension, we will store it in a
   bit-wise array (one bit for each dimension, to mark if it is on the edge
   (either side 1, or in the middle 0). Far many more elements will be in
   the middle, so there is no problem to check the edge. The good thing
   with a bit-array is that it can take one register on the CPU and stay
   there until the end. But if we want to have an array of values, multiple
   registers will be necessary.

   The bit information is in two two-byte spaces, so in theory, this works
   for 16 dimensions.
*/
#define GAL_DIMENSION_NEIGHBOR_OP(index, ndim, dsize, connectivity,     \
                                  dinc, operation) {                    \
    uint32_t gdn_bitstr=0;                                              \
    size_t nind, gdn_ind=index;                                         \
    uint8_t gdn_D, *gdn_is_start, *gdn_is_end, *gdn_is_edge, gdn_one=1; \
                                                                        \
    /* A small sanity check. */                                         \
    if(connectivity>ndim)                                               \
      error(EXIT_FAILURE, 0, "%s: connectivity value (%d) is larger "   \
            "than the number of dimensions (%zu)", __func__,            \
            (int)connectivity, ndim);                                   \
                                                                        \
    /* Initialize the start/end. */                                     \
    gdn_is_start=(uint8_t *)(&gdn_bitstr);                              \
    gdn_is_end=(uint8_t *)(&gdn_bitstr)+1;                              \
                                                                        \
    /* Start with the slowest dimension and see if it is on the edge */ \
    /* or not, similar to `gal_dimension_index_to_coord'. In the */     \
    /* process, also fill the `connectivity==1' neighbors. */           \
    for(gdn_D=0;gdn_D<ndim;++gdn_D)                                     \
      {                                                                 \
        /* If this dimension is only one element wide, no neighbors. */ \
        if( (dsize)[gdn_D] == 1 )                                       \
          {                                                             \
            *gdn_is_start |= 1<<gdn_D;                                  \
            *gdn_is_end   |= 1<<gdn_D;                                  \
          }                                                             \
        else                                                            \
          {                                                             \
            if( gdn_ind / (dinc)[gdn_D] )                               \
              {                                                         \
                /* We are at the end of this dimension. */              \
                if( gdn_ind / (dinc)[gdn_D] == (dsize)[gdn_D]-1 )       \
                  {                                                     \
                    *gdn_is_end |= gdn_one<<gdn_D;                      \
                    nind = (index) - (dinc)[gdn_D]; {operation;};       \
                  }                                                     \
                                                                        \
                /* Middle of the dimension: both +1 and -1 possible. */ \
                else                                                    \
                  {                                                     \
                    nind = (index) - (dinc)[gdn_D]; {operation;};       \
                    nind = (index) + (dinc)[gdn_D]; {operation;};       \
                  }                                                     \
              }                                                         \
            else                                                        \
              {                                                         \
                *gdn_is_start |= gdn_one<<gdn_D;                        \
                nind = (index) + (dinc)[gdn_D]; {operation;};           \
              }                                                         \
          }                                                             \
                                                                        \
        /* Change `ind' to the remainder of previous dimensions. */     \
        gdn_ind %= dinc[gdn_D];                                         \
      }                                                                 \
                                                                        \
    /* We now know if the index is on the edge or not. During the */    \
    /* process above, we also finished the `connectivity==1' case. */   \
    /* So we'll just have to find the rest of the terms. */             \
    if(connectivity>1 && ndim>1)                                        \
      {                                                                 \
        /* Finalize `is_edge' (bit value 1 for respective dim.). */     \
        gdn_is_edge=(uint8_t *)(&gdn_bitstr)+2;                         \
        *gdn_is_edge = *gdn_is_start | *gdn_is_end;                     \
                                                                        \
        /* Shared between 2D and 3D datasets. */                        \
        if(*gdn_is_edge)                                                \
          { /* NOTE: these are bitwise operators, not conditionals. */  \
            if( !( *gdn_is_start & ( gdn_one | gdn_one<<1 ) ) )         \
              { nind=(index) - (dinc)[0] - (dinc)[1]; {operation;}; }   \
            if( !( *gdn_is_start & gdn_one )                            \
                && !( *gdn_is_end   & gdn_one<<1 ) )                    \
              { nind=(index) - (dinc)[0] + (dinc)[1]; {operation;}; }   \
            if( !( *gdn_is_end & gdn_one )                              \
                && !( *gdn_is_start & gdn_one<<1 ) )                    \
              { nind=(index) + (dinc)[0] - (dinc)[1]; {operation;}; }   \
            if( !( *gdn_is_end   & ( gdn_one | gdn_one<<1 ) ) )         \
              { nind=(index) + (dinc)[0] + (dinc)[1]; {operation;}; }   \
          }                                                             \
        else                                                            \
          {                                                             \
            nind=(index) - (dinc)[0] - (dinc)[1]; {operation;};         \
            nind=(index) - (dinc)[0] + (dinc)[1]; {operation;};         \
            nind=(index) + (dinc)[0] - (dinc)[1]; {operation;};         \
            nind=(index) + (dinc)[0] + (dinc)[1]; {operation;};         \
          }                                                             \
                                                                        \
        /* Only for 3D datasets. */                                     \
        if(ndim>2)                                                      \
          {                                                             \
            /* Connectivity == 2. */                                    \
            if(*gdn_is_edge)                                            \
              for(gdn_D=0;gdn_D<2;++gdn_D)                              \
                {                                                       \
                  if( !( *gdn_is_start & ( gdn_one<<gdn_D | gdn_one<<2 ) ) ) \
                    { nind=(index) - (dinc)[gdn_D] - (dinc)[2];         \
                      {operation;}; }                                   \
                  if( !( *gdn_is_start & gdn_one<<gdn_D )               \
                      && !( *gdn_is_end   & gdn_one<<2 ) )              \
                    { nind=(index) - (dinc)[gdn_D] + (dinc)[2];         \
                      {operation;}; }                                   \
                  if( !( *gdn_is_end   & gdn_one<<gdn_D )               \
                      && !( *gdn_is_start & gdn_one<<2 ) )              \
                    { nind=(index) + (dinc)[gdn_D] - (dinc)[2];         \
                      {operation;}; }                                   \
                  if( !( *gdn_is_end   & ( gdn_one<<gdn_D | gdn_one<<2 ) ) ) \
                    { nind=(index) + (dinc)[gdn_D] + (dinc)[2];         \
                      {operation;}; }                                   \
                }                                                       \
            else                                                        \
              for(gdn_D=0;gdn_D<2;++gdn_D)                              \
                {                                                       \
                  nind=(index) - (dinc)[gdn_D] - (dinc)[2]; {operation;}; \
                  nind=(index) - (dinc)[gdn_D] + (dinc)[2]; {operation;}; \
                  nind=(index) + (dinc)[gdn_D] - (dinc)[2]; {operation;}; \
                  nind=(index) + (dinc)[gdn_D] + (dinc)[2]; {operation;}; \
                }                                                       \
                                                                        \
            /* Connectivity == 3. */                                    \
            if(connectivity>2)                                          \
              {                                                         \
                if(*gdn_is_edge)                                        \
                  {                                                     \
                    if( !*gdn_is_start )                                \
                      { nind=(index) - (dinc)[0] - (dinc)[1] - (dinc)[2]; \
                        {operation;}; }                                 \
                                                                        \
                    if( !(*gdn_is_start & gdn_one)                      \
                        && !(*gdn_is_start & gdn_one<<1)                \
                        && !(*gdn_is_end & gdn_one<<2))                 \
                      { nind=(index) - (dinc)[0] - (dinc)[1] + (dinc)[2]; \
                        {operation;}; }                                 \
                                                                        \
                    if( !(*gdn_is_start & gdn_one)                      \
                        && !(*gdn_is_end & gdn_one<<1)                  \
                        && !(*gdn_is_start & gdn_one<<2))               \
                      { nind=(index) - (dinc)[0] + (dinc)[1] - (dinc)[2]; \
                        {operation;}; }                                 \
                                                                        \
                    if( !(*gdn_is_start & gdn_one)                      \
                        && !(*gdn_is_end & gdn_one<<1)                  \
                        && !(*gdn_is_end & gdn_one<<2))                 \
                      { nind=(index) - (dinc)[0] + (dinc)[1] + (dinc)[2]; \
                        {operation;}; }                                 \
                                                                        \
                    if( !(*gdn_is_end & gdn_one)                        \
                        && !(*gdn_is_start & gdn_one<<1)                \
                        && !(*gdn_is_start & gdn_one<<2))               \
                      { nind=(index) + (dinc)[0] - (dinc)[1] - (dinc)[2]; \
                        {operation;}; }                                 \
                                                                        \
                    if( !(*gdn_is_end & gdn_one)                        \
                        && !(*gdn_is_start & gdn_one<<1)                \
                        && !(*gdn_is_end & gdn_one<<2))                 \
                      { nind=(index) + (dinc)[0] - (dinc)[1] + (dinc)[2]; \
                        {operation;}; }                                 \
                                                                        \
                    if( !(*gdn_is_end & gdn_one)                        \
                        && !(*gdn_is_end & gdn_one<<1)                  \
                        && !(*gdn_is_start & gdn_one<<2))               \
                      { nind=(index) + (dinc)[0] + (dinc)[1] - (dinc)[2]; \
                        {operation;}; }                                 \
                                                                        \
                    if( !*gdn_is_end )                                  \
                      { nind=(index) + (dinc)[0] + (dinc)[1] + (dinc)[2]; \
                        {operation;}; }                                 \
                  }                                                     \
                else                                                    \
                  {                                                     \
                    nind=(index) - (dinc)[0] - (dinc)[1] - (dinc)[2];   \
                    {operation;};                                       \
                    nind=(index) - (dinc)[0] - (dinc)[1] + (dinc)[2];   \
                    {operation;};                                       \
                    nind=(index) - (dinc)[0] + (dinc)[1] - (dinc)[2];   \
                    {operation;};                                       \
                    nind=(index) - (dinc)[0] + (dinc)[1] + (dinc)[2];   \
                    {operation;};                                       \
                    nind=(index) + (dinc)[0] - (dinc)[1] - (dinc)[2];   \
                    {operation;};                                       \
                    nind=(index) + (dinc)[0] - (dinc)[1] + (dinc)[2];   \
                    {operation;};                                       \
                    nind=(index) + (dinc)[0] + (dinc)[1] - (dinc)[2];   \
                    {operation;};                                       \
                    nind=(index) + (dinc)[0] + (dinc)[1] + (dinc)[2];   \
                    {operation;};                                       \
                  }                                                     \
              }                                                         \
          }                                                             \
      }                                                                 \
                                                                        \
    /* For a check. */                                                  \
    /* printf("\nEdge bit flags: "); */                                 \
    /* gal_data_bit_print_stream(&gdn_bitstr, 3); printf("\n"); */      \
  }


__END_C_DECLS    /* From C++ preparations */

#endif