/usr/share/gnudatalanguage/lib/deriv.pro is in libgnudatalanguage0 0.9.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 | ;+
; NAME: DERIV
;
; PURPOSE:
; This function performs a numerical differentiation
; using a 3 points interpolation in Lagrangian way.
; The advantage of this procedure is we don't have to know the
; analytical equation of the "tabulated" data.
; Lagrangian interpolation means we "fit" the data with a polynomial
; which cross the data at collocation points. The fact we assume we
; have a polynomial give an explicit formula for the derivative.
;
; When only Y (data) are provided, a constant step of 1 is assumed
; between x-positions. Except at the edges, the formula is very simple.
;
; When X (positions) and Y (data) are provided, a more complex computation
; is donne.
;
; See below (in Section PROCEDURE) where you can found the formulae
;
; CATEGORY: Numerical analysis.
;
; CALLING SEQUENCE:
; result = DERIV, [x], y, [help=help], [test=test], [check=check]
;
; -- result = DERIV(data) (also : d=DERIV(Y))
; -- result = DERIV(positions, data) (also : d=DERIV(X,Y))
;
; INPUTS:
; -- When only one array (X) is provided, X contains the data to
; be differentiated ()
; -- When two arrays are provided
; X is the array containing the positions of data (colocations)
; Y is the array containing the data
;
; OPTIONAL INPUTS: none
;
; KEYWORD PARAMETERS:
; -- no_check : since we do extra checks, do not do them !
; (DESACTIVATED ! but we keep it for compatility issue)
; -- check : you can ask for extra tests on input
;
; -- Help : give a very simple summary of procedure then exit
; -- Test : will stop just before the return statement
; (useful for internal checking/debugging)
;
; OUTPUTS: Return the numerical derivative (Lagrangian formalism)
; Please note that the output type will be Float OR Double
;
; OPTIONAL OUTPUTS: none
;
; COMMON BLOCKS: none
;
; SIDE EFFECTS: none
;
; RESTRICTIONS: - We do check if the length of the 2 arrays (if 2)
; are the same (as in IDL)
; - We can check if the x(n+1)-x(n) is <> 0. (not
; done in IDL)
; - We can check if the X array is well sorted (not
; done in IDL)
; - We can check if Delta_x is constant or not (not
; done in IDL)
; - Neither IDL version or GDL version manage NaN values
;
; COMPATIBILITY:
; - this function is NOT FULLY compatible with the IDL one.
; NEVERTHELESS, it should give the same output with the same "normal" input(s).
; We DO have ADD some checks (zero steps, size of Y array, sorting,
; shortcut for constant step) which were missing in initial procedure.
; This will give clear warning when a problem is encountered.
;
; WARNING:
; - NaN values are maybe not fully managed now
;
; PROCEDURE:
; - in the IDL version, it is written that the procedure is described
; in Hildebrand, Introduction to Numerical Analysis, Mc Graw Hill,
; 1956, p. 82 (see IMCCE library, Bat A, Floor 2, Paris
; Observatory). But in that book, only the simple formulae for
; constant steps are explicitaly written. Nothing else in Chapter 3.
;
; - for the case with constant step, the procedure is obvious,
; except at the edges. We do use the formulae given in Hildebrand (p82)
; - when the X step is variable, a more complex computation is
; mandatory. We use the formulae written here:
; http://sonia_madani.club.fr/Cloaque/Arithmurgistan/Derivation/lagrange.html
;
; EXAMPLE: see also the accompagning program TEST_DERIV
; d=DERIV(REPLICATE(1.,nbp))
; d=DERIV(x_pos, y_data)
;
; TESTABILITY: the best way is to try on a pure slope !
;
; MODIFICATION HISTORY:
; - 17/03/2006 created by Alain Coulais (ARSC)
; - 09/10/2012 default is to be as tolerant as possible (/check if needed) !
;
;-
; LICENCE:
; Copyright (C) 2006, 2012 Alain Coulais
; This program is free software; you can redistribute it and/or modify
; it under the terms of the GNU General Public License as published by
; the Free Software Foundation; either version 2 of the License, or
; (at your option) any later version.
;
;-
function DERIV, x, y, help=help, test=test, no_check=no_check, check=check
;
ON_ERROR, 2
;
; When GDL behavior of {MESSAGE, .skip, .Continue} will be similar to
; IDL, the following flag can be switch to 1 !
;
flag_message=1
name_proc='% DERIV: '
;
if ((N_PARAMS() EQ 0) OR (N_PARAMS() GT 2)) then begin
if (flag_message EQ 1) then begin
MESSAGE, 'Incorrect number of arguments'
endif else begin
print, '% DERIV: Incorrect number of arguments'
help=1
endelse
endif
;
if KEYWORD_SET(help) then begin
print, 'function DERIV, [x,] y, $'
print, ' [help=help, test=test, no_check=no_check, check=check]'
return, -1
endif
;
nbp_x=N_ELEMENTS(x)
if (nbp_x LT 3) then begin
txt='Data must have at least 3 points !'
if (flag_message EQ 1) then MESSAGE, txt else print, name_proc+txt
return, -1
endif
;
if (SIZE(x,/type) EQ 7) then begin
txt='No STRING vector allowed !'
if (flag_message EQ 1) then MESSAGE, txt else print, name_proc+txt
return, -1
endif
;
; We check whether X and Y arrays have same size !
if (N_PARAMS() EQ 2) then begin
nbp_y=N_ELEMENTS(y)
if (nbp_x NE nbp_y) then begin
txt='X and Y vectors must have same size !'
if (flag_message EQ 1) then MESSAGE, txt else print, name_proc+txt
return, -1
endif
if (SIZE(y,/type) EQ 7) then begin
txt='No STRING vector allowed !'
if (flag_message EQ 1) then MESSAGE, txt else print, name_proc+txt
return, -1
endif
endif
;
; First case : we only have Data, no Position.
; That means that the data are equally spaced.
; We use the 3 formulae given by Hildebrand
;
if (N_PARAMS() EQ 1) then begin
;;
derivee=SHIFT(x,-1)-SHIFT(x,1)
;;
;; Specific computation for the 2 Edges
;; (if needed, the type conversion (Int/Long --> Float) will be
;; done here automatically)
;;
derivee[0]=-3.0*x[0]+4.0*x[1]-x[2]
derivee[nbp_x-1]=3.0*x[nbp_x-1]-4.0*x[nbp_x-2]+x[nbp_x-3]
;;
derivee=derivee/2.
endif
;
; Second case : we have Positions (X) and Data (Y)
; We use the formulae expressed on Web Site
;
if (N_PARAMS() EQ 2) then begin
if KEYWORD_SET(check) then begin
;; some checks : sorting, no-nul steps, no-constant steps, ...
;;
dx=x-SHIFT(x,1)
dx=dx[1:*]
dx_min=MIN(dx)
dx_max=MAX(dx)
;;
;; X locations must be sorted (by increasing order)
;;
if (dx_min LT 0.0) then begin
txt='X colocations MUST be sorted !'
if (flag_message EQ 1) then MESSAGE, txt else print, name_proc+txt
return, -1
endif
;;
;; X locations must be strictly different (to avoid zero division)
;;
if (dx_min EQ 0.0) then begin
txt='At least 2 X colocations are EQUAL !'
if (flag_message EQ 1) then MESSAGE, txt else print, name_proc+txt
return, -1
endif
;;
;; When All steps are equal, we can used "FAST" way ...
;;
if (dx_min EQ dx_max) then begin
if KEYWORD_SET(verbose) then print, name_proc+'Found constant STEP ... Algorithm changed'
derivee=DERIV(y)/dx_min
if KEYWORD_SET(test) then STOP
return, derivee
endif
;; after here, X are well conditionned !
;; x0 < x1 < x2
endif
;;
;; 3 useful expressions
;;
x0_x1=SHIFT(x,1)-x
x1_x2=x-SHIFT(x,-1)
x0_x2=SHIFT(x,1)-SHIFT(x,-1)
;;
derivee=SHIFT(y,1)*x1_x2/(x0_x1*x0_x2)
derivee=derivee+y*(1./x1_x2-1./x0_x1)
derivee=derivee-SHIFT(y,-1)*x0_x1/(x0_x2*x1_x2)
;;
;; The 2 Edges (see matrix formulae on Web Page)
;;
derivee[0]=y[0]*(1./x0_x1[1]+1./x0_x2[1])
derivee[0]=derivee[0]-y[1]*x0_x2[1]/(x0_x1[1]*x1_x2[1])
derivee[0]=derivee[0]+y[2]*x0_x1[1]/(x0_x2[1]*x1_x2[1])
;;
;; useful index
nm3=nbp_x-3
nm2=nbp_x-2
nm1=nbp_x-1
;;
derivee[nm1]=-y[nm3]*x1_x2[nm2]/(x0_x1[nm2]*x0_x2[nm2])
derivee[nm1]=derivee[nm1]+y[nm2]*x0_x2[nm2]/(x0_x1[nm2]*x1_x2[nm2])
derivee[nm1]=derivee[nm1]-y[nm1]*(1./x0_x2[nm2]+1./x1_x2[nm2])
endif
;
if KEYWORD_SET(test) then STOP
;
return, derivee
;
end
|