This file is indexed.

/usr/lib/gcc/x86_64-linux-gnu/6/include/d/core/cpuid.d is in libgphobos-6-dev 6.4.0-17ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
/**
 * Identify the characteristics of the host CPU, providing information
 * about cache sizes and assembly optimisation hints. This module is
 * provided primarily for assembly language programmers.
 *
 * References:
 * Some of this information was extremely difficult to track down. Some of the
 * documents below were found only in cached versions stored by search engines!
 * This code relies on information found in:
 *
 * $(UL
 * $(LI "Intel(R) 64 and IA-32 Architectures Software Developers Manual,
 *    Volume 2A: Instruction Set Reference, A-M" (2007).
 * )
 * $(LI "AMD CPUID Specification", Advanced Micro Devices, Rev 2.28 (2008).
 * )
 * $(LI "AMD Processor Recognition Application Note For Processors Prior to AMD
 *    Family 0Fh Processors", Advanced Micro Devices, Rev 3.13 (2005).
 * )
 * $(LI "AMD Geode(TM) GX Processors Data Book",
 *    Advanced Micro Devices, Publication ID 31505E, (2005).
 * )
 * $(LI "AMD K6 Processor Code Optimisation", Advanced Micro Devices, Rev D (2000).
 * )
 * $(LI "Application note 106: Software Customization for the 6x86 Family",
 *    Cyrix Corporation, Rev 1.5 (1998)
 * )
 * $(LI $(LINK http://www.datasheetcatalog.org/datasheet/nationalsemiconductor/GX1.pdf))
 * $(LI "Geode(TM) GX1 Processor Series Low Power Integrated X86 Solution",
 *   National Semiconductor, (2002)
 * )
 * $(LI "The VIA Isaiah Architecture", G. Glenn Henry, Centaur Technology, Inc (2008).
 * )
 * $(LI $(LINK http://www.sandpile.org/ia32/cpuid.htm))
 * $(LI $(LINK http://www.akkadia.org/drepper/cpumemory.pdf))
 * $(LI "What every programmer should know about memory",
 *    Ulrich Depper, Red Hat, Inc., (2007).
 * )
 * $(LI "CPU Identification by the Windows Kernel", G. Chappell (2009).
 *   $(LINK http://www.geoffchappell.com/viewer.htm?doc=studies/windows/km/cpu/cx8.htm)
 * )
 * $(LI "Intel(R) Processor Identification and the CPUID Instruction, Application
 *    Note 485" (2009).
 * )
 * )
 *
 * Bugs: Currently only works on x86 and Itanium CPUs.
 *      Many processors have bugs in their microcode for the CPUID instruction,
 *      so sometimes the cache information may be incorrect.
 *
 * Copyright: Copyright Don Clugston 2007 - 2009.
 * License:   $(LINK2 http://www.boost.org/LICENSE_1_0.txt, Boost License 1.0)
 * Authors:   Don Clugston, Tomas Lindquist Olsen <tomas@famolsen.dk>
 * Source:    $(DRUNTIMESRC core/_cpuid.d)
 */

/*          Copyright Don Clugston 2007 - 2009.
 * Distributed under the Boost Software License, Version 1.0.
 *    (See accompanying file LICENSE or copy at
 *          http://www.boost.org/LICENSE_1_0.txt)
 */
module core.cpuid;

@trusted:
nothrow:
@nogc:

// If optimizing for a particular processor, it is generally better
// to identify based on features rather than model. NOTE: Normally
// it's only worthwhile to optimise for the latest Intel and AMD CPU,
// with a backup for other CPUs.
// Pentium    -- preferPentium1()
// PMMX       --   + mmx()
// PPro       -- default
// PII        --   + mmx()
// PIII       --   + mmx() + sse()
// PentiumM   --   + mmx() + sse() + sse2()
// Pentium4   -- preferPentium4()
// PentiumD   --   + isX86_64()
// Core2      -- default + isX86_64()
// AMD K5     -- preferPentium1()
// AMD K6     --   + mmx()
// AMD K6-II  --   + mmx() + 3dnow()
// AMD K7     -- preferAthlon()
// AMD K8     --   + sse2()
// AMD K10    --   + isX86_64()
// Cyrix 6x86 -- preferPentium1()
//    6x86MX  --   + mmx()

// GDC support uses extended inline assembly:
//   https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html        (general information and hints)
//   https://gcc.gnu.org/onlinedocs/gcc/Simple-Constraints.html  (binding variables to registers)
//   https://gcc.gnu.org/onlinedocs/gcc/Machine-Constraints.html (x86 specific register short names)

public:

/// Cache size and behaviour
struct CacheInfo
{
    /// Size of the cache, in kilobytes, per CPU.
    /// For L1 unified (data + code) caches, this size is half the physical size.
    /// (we don't halve it for larger sizes, since normally
    /// data size is much greater than code size for critical loops).
    size_t size;
    /// Number of ways of associativity, eg:
    /// 1 = direct mapped
    /// 2 = 2-way set associative
    /// 3 = 3-way set associative
    /// ubyte.max = fully associative
    ubyte associativity;
    /// Number of bytes read into the cache when a cache miss occurs.
    uint lineSize;
}

public:
    /// $(RED Scheduled for deprecation. Please use $(D dataCaches) instead.)
    // Note: When we deprecate it, we simply make it private.
    __gshared CacheInfo[5] datacache;

    @property {
    /// The data caches. If there are fewer than 5 physical caches levels,
    /// the remaining levels are set to size_t.max (== entire memory space)
    const(CacheInfo)[5] dataCaches() { return datacache; }

    /// Returns vendor string, for display purposes only.
    /// Do NOT use this to determine features!
    /// Note that some CPUs have programmable vendorIDs.
    string vendor()     {return cast(string)vendorID;}
    /// Returns processor string, for display purposes only
    string processor()  {return processorName;}

    /// Does it have an x87 FPU on-chip?
    bool x87onChip()    {return (features&FPU_BIT)!=0;}
    /// Is MMX supported?
    bool mmx()          {return (features&MMX_BIT)!=0;}
    /// Is SSE supported?
    bool sse()          {return (features&SSE_BIT)!=0;}
    /// Is SSE2 supported?
    bool sse2()         {return (features&SSE2_BIT)!=0;}
    /// Is SSE3 supported?
    bool sse3()         {return (miscfeatures&SSE3_BIT)!=0;}
    /// Is SSSE3 supported?
    bool ssse3()        {return (miscfeatures&SSSE3_BIT)!=0;}
    /// Is SSE4.1 supported?
    bool sse41()        {return (miscfeatures&SSE41_BIT)!=0;}
    /// Is SSE4.2 supported?
    bool sse42()        {return (miscfeatures&SSE42_BIT)!=0;}
    /// Is SSE4a supported?
    bool sse4a()        {return (amdmiscfeatures&SSE4A_BIT)!=0;}
    /// Is AES supported
    bool aes()          {return (miscfeatures&AES_BIT)!=0;}
    /// Is pclmulqdq supported
    bool hasPclmulqdq() {return (miscfeatures&PCLMULQDQ_BIT)!=0;}
    /// Is rdrand supported
    bool hasRdrand()    {return (miscfeatures&RDRAND_BIT)!=0;}
    /// Is AVX supported
    bool avx()
    {
        enum mask = XF_SSE_BIT|XF_YMM_BIT;
        return (xfeatures & mask) == mask && (miscfeatures&AVX_BIT)!=0;
    }
    /// Is VEX-Encoded AES supported
    bool vaes()         {return avx && aes;}
    /// Is vpclmulqdq supported
    bool hasVpclmulqdq(){return avx && hasPclmulqdq; }
    /// Is FMA supported
    bool fma()          {return avx && (miscfeatures&FMA_BIT)!=0;}
    /// Is FP16C supported
    bool fp16c()        {return avx && (miscfeatures&FP16C_BIT)!=0;}
    /// Is AVX2 supported
    bool avx2()         {return avx && (extfeatures & AVX2_BIT) != 0;}
    /// Is HLE (hardware lock elision) supported
    bool hle()          {return (extfeatures & HLE_BIT) != 0;}
    /// Is RTM (restricted transactional memory) supported
    bool rtm()          {return (extfeatures & RTM_BIT) != 0;}
    /// Is rdseed supported
    bool hasRdseed()    {return (extfeatures&RDSEED_BIT)!=0;}
    /// Is SHA supported
    bool hasSha()       {return (extfeatures&SHA_BIT)!=0;}
    /// Is AMD 3DNOW supported?
    bool amd3dnow()     {return (amdfeatures&AMD_3DNOW_BIT)!=0;}
    /// Is AMD 3DNOW Ext supported?
    bool amd3dnowExt()  {return (amdfeatures&AMD_3DNOW_EXT_BIT)!=0;}
    /// Are AMD extensions to MMX supported?
    bool amdMmx()       {return (amdfeatures&AMD_MMX_BIT)!=0;}
    /// Is fxsave/fxrstor supported?
    bool hasFxsr()          {return (features&FXSR_BIT)!=0;}
    /// Is cmov supported?
    bool hasCmov()          {return (features&CMOV_BIT)!=0;}
    /// Is rdtsc supported?
    bool hasRdtsc()         {return (features&TIMESTAMP_BIT)!=0;}
    /// Is cmpxchg8b supported?
    bool hasCmpxchg8b()     {return (features&CMPXCHG8B_BIT)!=0;}
    /// Is cmpxchg8b supported?
    bool hasCmpxchg16b()    {return (miscfeatures&CMPXCHG16B_BIT)!=0;}
    /// Is SYSENTER/SYSEXIT supported?
    bool hasSysEnterSysExit()     {
        // The SYSENTER/SYSEXIT features were buggy on Pentium Pro and early PentiumII.
        // (REF: www.geoffchappell.com).
        if (probablyIntel && (family < 6 || (family==6 && (model< 3 || (model==3 && stepping<3)))))
            return false;
        return (features & SYSENTERSYSEXIT_BIT)!=0;
    }


    /// Is 3DNow prefetch supported?
    bool has3dnowPrefetch()
        {return (amdmiscfeatures&AMD_3DNOW_PREFETCH_BIT)!=0;}
    /// Are LAHF and SAHF supported in 64-bit mode?
    bool hasLahfSahf()          {return (amdmiscfeatures&LAHFSAHF_BIT)!=0;}
    /// Is POPCNT supported?
    bool hasPopcnt()        {return (miscfeatures&POPCNT_BIT)!=0;}
    /// Is LZCNT supported?
    bool hasLzcnt()         {return (amdmiscfeatures&LZCNT_BIT)!=0;}
    /// Is this an Intel64 or AMD 64?
    bool isX86_64()         {return (amdfeatures&AMD64_BIT)!=0;}

    /// Is this an IA64 (Itanium) processor?
    bool isItanium()        { return (features&IA64_BIT)!=0; }

    /// Is hyperthreading supported?
    bool hyperThreading()   { return maxThreads>maxCores; }
    /// Returns number of threads per CPU
    uint threadsPerCPU()    {return maxThreads;}
    /// Returns number of cores in CPU
    uint coresPerCPU()      {return maxCores;}

    /// Optimisation hints for assembly code.
    ///
    /// For forward compatibility, the CPU is compared against different
    /// microarchitectures. For 32-bit x86, comparisons are made against
    /// the Intel PPro/PII/PIII/PM family.
    ///
    /// The major 32-bit x86 microarchitecture 'dynasties' have been:
    ///
    /// * Intel P6 (PentiumPro, PII, PIII, PM, Core, Core2).
    /// * AMD Athlon (K7, K8, K10).
    /// * Intel NetBurst (Pentium 4, Pentium D).
    /// * In-order Pentium (Pentium1, PMMX, Atom)
    ///
    /// Other early CPUs (Nx586, AMD K5, K6, Centaur C3, Transmeta,
    /// Cyrix, Rise) were mostly in-order.
    ///
    /// Some new processors do not fit into the existing categories:
    ///
    /// * Intel Atom 230/330 (family 6, model 0x1C) is an in-order core.
    /// * Centaur Isiah = VIA Nano (family 6, model F) is an out-of-order core.
    ///
    /// Within each dynasty, the optimisation techniques are largely
    /// identical (eg, use instruction pairing for group 4). Major
    /// instruction set improvements occur within each dynasty.

    /// Does this CPU perform better on AMD K7 code than PentiumPro..Core2 code?
    bool preferAthlon() { return probablyAMD && family >=6; }
    /// Does this CPU perform better on Pentium4 code than PentiumPro..Core2 code?
    bool preferPentium4() { return probablyIntel && family == 0xF; }
    /// Does this CPU perform better on Pentium I code than Pentium Pro code?
    bool preferPentium1() { return family < 6 || (family==6 && model < 0xF && !probablyIntel); }
    }

__gshared:
    // All these values are set only once, and never subsequently modified.
public:
    /// $(RED Warning: This field will be turned into a property in a future release.)
    ///
    /// Processor type (vendor-dependent).
    /// This should be visible ONLY for display purposes.
    uint stepping, model, family;
    /// $(RED This field has been deprecated. Please use $(D cacheLevels) instead.)
    uint numCacheLevels = 1;
    /// The number of cache levels in the CPU.
    @property uint cacheLevels() { return numCacheLevels; }
private:
    bool probablyIntel; // true = _probably_ an Intel processor, might be faking
    bool probablyAMD; // true = _probably_ an AMD processor
    string processorName;
    char [12] vendorID;
    char [48] processorNameBuffer;
    uint features = 0;     // mmx, sse, sse2, hyperthreading, etc
    uint miscfeatures = 0; // sse3, etc.
    uint extfeatures = 0;  // HLE, AVX2, RTM, etc.
    uint amdfeatures = 0;  // 3DNow!, mmxext, etc
    uint amdmiscfeatures = 0; // sse4a, sse5, svm, etc
    ulong xfeatures = 0;   // XFEATURES_ENABLED_MASK
    uint maxCores = 1;
    uint maxThreads = 1;
    // Note that this may indicate multi-core rather than hyperthreading.
    @property bool hyperThreadingBit()    { return (features&HTT_BIT)!=0;}

    // feature flags CPUID1_EDX
    enum : uint
    {
        FPU_BIT = 1,
        TIMESTAMP_BIT = 1<<4, // rdtsc
        MDSR_BIT = 1<<5,      // RDMSR/WRMSR
        CMPXCHG8B_BIT = 1<<8,
        SYSENTERSYSEXIT_BIT = 1<<11,
        CMOV_BIT = 1<<15,
        MMX_BIT = 1<<23,
        FXSR_BIT = 1<<24,
        SSE_BIT = 1<<25,
        SSE2_BIT = 1<<26,
        HTT_BIT = 1<<28,
        IA64_BIT = 1<<30
    }
    // feature flags misc CPUID1_ECX
    enum : uint
    {
        SSE3_BIT = 1,
        PCLMULQDQ_BIT = 1<<1, // from AVX
        MWAIT_BIT = 1<<3,
        SSSE3_BIT = 1<<9,
        FMA_BIT = 1<<12,     // from AVX
        CMPXCHG16B_BIT = 1<<13,
        SSE41_BIT = 1<<19,
        SSE42_BIT = 1<<20,
        POPCNT_BIT = 1<<23,
        AES_BIT = 1<<25, // AES instructions from AVX
        OSXSAVE_BIT = 1<<27, // Used for AVX
        AVX_BIT = 1<<28,
        FP16C_BIT = 1<<29,
        RDRAND_BIT = 1<<30,
    }
    // Feature flags for cpuid.{EAX = 7, ECX = 0}.EBX.
    enum : uint
    {
        FSGSBASE_BIT = 1 << 0,
        BMI1_BIT = 1 << 3,
        HLE_BIT = 1 << 4,
        AVX2_BIT = 1 << 5,
        SMEP_BIT = 1 << 7,
        BMI2_BIT = 1 << 8,
        ERMS_BIT = 1 << 9,
        INVPCID_BIT = 1 << 10,
        RTM_BIT = 1 << 11,
        RDSEED_BIT = 1 << 18,
        SHA_BIT = 1 << 29,
    }
    // feature flags XFEATURES_ENABLED_MASK
    enum : ulong
    {
        XF_FP_BIT  = 0x1,
        XF_SSE_BIT = 0x2,
        XF_YMM_BIT = 0x4,
    }
    // AMD feature flags CPUID80000001_EDX
    enum : uint
    {
        AMD_MMX_BIT = 1<<22,
//      FXR_OR_CYRIXMMX_BIT = 1<<24, // Cyrix/NS: 6x86MMX instructions.
        FFXSR_BIT = 1<<25,
        PAGE1GB_BIT = 1<<26, // support for 1GB pages
        RDTSCP_BIT = 1<<27,
        AMD64_BIT = 1<<29,
        AMD_3DNOW_EXT_BIT = 1<<30,
        AMD_3DNOW_BIT = 1<<31
    }
    // AMD misc feature flags CPUID80000001_ECX
    enum : uint
    {
        LAHFSAHF_BIT = 1,
        LZCNT_BIT = 1<<5,
        SSE4A_BIT = 1<<6,
        AMD_3DNOW_PREFETCH_BIT = 1<<8,
    }


version(GNU) {
    version(X86)
        enum supportedX86 = true;
    else version(X86_64)
        enum supportedX86 = true;
    else
        enum supportedX86 = false;
} else version(D_InlineAsm_X86) {
    enum supportedX86 = true;
} else version(D_InlineAsm_X86_64) {
    enum supportedX86 = true;
} else {
    enum supportedX86 = false;
}

static if (supportedX86) {
// Note that this code will also work for Itanium in x86 mode.

__gshared uint max_cpuid, max_extended_cpuid;

// CPUID2: "cache and tlb information"
void getcacheinfoCPUID2()
{
    // We are only interested in the data caches
    void decipherCpuid2(ubyte x) @nogc nothrow {
        if (x==0) return;
        // Values from http://www.sandpile.org/ia32/cpuid.htm.
        // Includes Itanium and non-Intel CPUs.
        //
        static immutable ubyte [63] ids = [
            0x0A, 0x0C, 0x0D, 0x2C, 0x60, 0x0E, 0x66, 0x67, 0x68,
            // level 2 cache
            0x41, 0x42, 0x43, 0x44, 0x45, 0x78, 0x79, 0x7A, 0x7B, 0x7C, 0x7D, 0x7F,
            0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x49, 0x4E,
            0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x48, 0x80, 0x81,
            // level 3 cache
            0x22, 0x23, 0x25, 0x29, 0x46, 0x47, 0x4A, 0x4B, 0x4C, 0x4D,

            0xD0, 0xD1, 0xD2, 0xD6, 0xD7, 0xD8, 0xDC, 0xDD, 0xDE,
            0xE2, 0xE3, 0xE4, 0xEA, 0xEB, 0xEC
        ];
        static immutable uint [63] sizes = [
            8, 16, 16, 64, 16, 24, 8, 16, 32,
            128, 256, 512, 1024, 2048, 1024, 128, 256, 512, 1024, 2048, 512,
            256, 512, 1024, 2048, 512, 1024, 4096, 6*1024,
            128, 192, 128, 256, 384, 512, 3072, 512, 128,
            512, 1024, 2048, 4096, 4096, 8192, 6*1024, 8192, 12*1024, 16*1024,

            512, 1024, 2048, 1024, 2048, 4096, 1024+512, 3*1024, 6*1024,
            2*1024, 4*1024, 8*1024, 12*1024, 28*1024, 24*1024
        ];
    // CPUBUG: Pentium M reports 0x2C but tests show it is only 4-way associative
        static immutable ubyte [63] ways = [
            2, 4, 4, 8, 8, 6, 4, 4, 4,
            4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 2,
            8, 8, 8, 8, 4, 8, 16, 24,
            4, 6, 2, 4, 6, 4, 12, 8, 8,
            4, 8, 8, 8, 4, 8, 12, 16, 12, 16,
            4, 4, 4, 8, 8, 8, 12, 12, 12,
            16, 16, 16, 24, 24, 24
        ];
        enum { FIRSTDATA2 = 8, FIRSTDATA3 = 28+9 }
        for (size_t i=0; i< ids.length; ++i) {
            if (x==ids[i]) {
                int level = i< FIRSTDATA2 ? 0: i<FIRSTDATA3 ? 1 : 2;
                if (x==0x49 && family==0xF && model==0x6) level=2;
                datacache[level].size=sizes[i];
                datacache[level].associativity=ways[i];
                if (level == 3 || x==0x2C || x==0x0D || (x>=0x48 && x<=0x80)
                                   || x==0x86 || x==0x87
                                   || (x>=0x66 && x<=0x68) || (x>=0x39 && x<=0x3E)){
                    datacache[level].lineSize = 64;
                } else datacache[level].lineSize = 32;
            }
        }
    }

    uint[4] a;
    bool firstTime = true;
    // On a multi-core system, this could theoretically fail, but it's only used
    // for old single-core CPUs.
    uint numinfos = 1;
    do {
        version(GNU) asm pure nothrow @nogc {
            "cpuid" : "=a" a[0], "=b" a[1], "=c" a[2], "=d" a[3] : "a" 2;
        } else asm pure nothrow @nogc {
            mov EAX, 2;
            cpuid;
            mov a, EAX;
            mov a+4, EBX;
            mov a+8, ECX;
            mov a+12, EDX;
        }
        if (firstTime) {
            if (a[0]==0x0000_7001 && a[3]==0x80 && a[1]==0 && a[2]==0) {
        // Cyrix MediaGX MMXEnhanced returns: EAX= 00007001, EDX=00000080.
        // These are NOT standard Intel values
        // (TLB = 32 entry, 4 way associative, 4K pages)
        // (L1 cache = 16K, 4way, linesize16)
                datacache[0].size=8;
                datacache[0].associativity=4;
                datacache[0].lineSize=16;
                return;
            }
            // lsb of a is how many times to loop.
            numinfos = a[0] & 0xFF;
            // and otherwise it should be ignored
            a[0] &= 0xFFFF_FF00;
            firstTime = false;
        }
        for (int c=0; c<4;++c) {
            // high bit set == no info.
            if (a[c] & 0x8000_0000) continue;
            decipherCpuid2(cast(ubyte)(a[c] & 0xFF));
            decipherCpuid2(cast(ubyte)((a[c]>>8) & 0xFF));
            decipherCpuid2(cast(ubyte)((a[c]>>16) & 0xFF));
            decipherCpuid2(cast(ubyte)((a[c]>>24) & 0xFF));
        }
    } while (--numinfos);
}

// CPUID4: "Deterministic cache parameters" leaf
void getcacheinfoCPUID4()
{
    int cachenum = 0;
    for(;;) {
        uint a, b, number_of_sets;
        version(GNU) asm pure nothrow @nogc {
            "cpuid" : "=a" a, "=b" b, "=c" number_of_sets : "a" 4, "c" cachenum : "edx";
        } else asm pure nothrow @nogc {
            mov EAX, 4;
            mov ECX, cachenum;
            cpuid;
            mov a, EAX;
            mov b, EBX;
            mov number_of_sets, ECX;
        }
        ++cachenum;
        if ((a&0x1F)==0) break; // no more caches
        uint numthreads = ((a>>14) & 0xFFF)  + 1;
        uint numcores = ((a>>26) & 0x3F) + 1;
        if (numcores > maxCores) maxCores = numcores;
        if ((a&0x1F)!=1 && ((a&0x1F)!=3)) continue; // we only want data & unified caches

        ++number_of_sets;
        ubyte level = cast(ubyte)(((a>>5)&7)-1);
        if (level > datacache.length) continue; // ignore deep caches
        datacache[level].associativity = a & 0x200 ? ubyte.max :cast(ubyte)((b>>22)+1);
        datacache[level].lineSize = (b & 0xFFF)+ 1; // system coherency line size
        uint line_partitions = ((b >> 12)& 0x3FF) + 1;
        // Size = number of sets * associativity * cachelinesize * linepartitions
        // and must convert to Kb, also dividing by the number of hyperthreads using this cache.
        ulong sz = (datacache[level].associativity< ubyte.max)? number_of_sets *
            datacache[level].associativity : number_of_sets;
        datacache[level].size = cast(size_t)(
                (sz * datacache[level].lineSize * line_partitions ) / (numthreads *1024));
        if (level == 0 && (a&0xF)==3) {
            // Halve the size for unified L1 caches
            datacache[level].size/=2;
        }
    }
}

// CPUID8000_0005 & 6
void getAMDcacheinfo()
{
    uint dummy, c5, c6, d6;
    version(GNU) asm pure nothrow @nogc {
        "cpuid" : "=a" dummy, "=c" c5 : "a" 0x8000_0005 : "ebx", "edx";
    } else asm pure nothrow @nogc {
        mov EAX, 0x8000_0005; // L1 cache
        cpuid;
        // EAX has L1_TLB_4M.
        // EBX has L1_TLB_4K
        // EDX has L1 instruction cache
        mov c5, ECX;
    }

    datacache[0].size = ( (c5>>24) & 0xFF);
    datacache[0].associativity = cast(ubyte)( (c5 >> 16) & 0xFF);
    datacache[0].lineSize = c5 & 0xFF;

    if (max_extended_cpuid >= 0x8000_0006) {
        // AMD K6-III or K6-2+ or later.
        ubyte numcores = 1;
        if (max_extended_cpuid >=0x8000_0008) {
            version(GNU) asm pure nothrow @nogc {
                "cpuid" : "=a" dummy, "=c" numcores : "a" 0x8000_0008 : "ebx", "edx";
            } else asm pure nothrow @nogc {
                mov EAX, 0x8000_0008;
                cpuid;
                mov numcores, CL;
            }
            ++numcores;
            if (numcores>maxCores) maxCores = numcores;
        }

        version(GNU) asm pure nothrow @nogc {
            "cpuid" : "=a" dummy, "=c" c6, "=d" d6 : "a" 0x8000_0006 : "ebx";
        } else asm pure nothrow @nogc {
            mov EAX, 0x8000_0006; // L2/L3 cache
            cpuid;
            mov c6, ECX; // L2 cache info
            mov d6, EDX; // L3 cache info
        }

        static immutable ubyte [] assocmap = [ 0, 1, 2, 0, 4, 0, 8, 0, 16, 0, 32, 48, 64, 96, 128, 0xFF ];
        datacache[1].size = (c6>>16) & 0xFFFF;
        datacache[1].associativity = assocmap[(c6>>12)&0xF];
        datacache[1].lineSize = c6 & 0xFF;

        // The L3 cache value is TOTAL, not per core.
        datacache[2].size = ((d6>>18)*512)/numcores; // could be up to 2 * this, -1.
        datacache[2].associativity = assocmap[(d6>>12)&0xF];
        datacache[2].lineSize = d6 & 0xFF;
    }
}

// For Intel CoreI7 and later, use function 0x0B
// to determine number of processors.
void getCpuInfo0B()
{
    int level=0;
    int threadsPerCore;
    uint a, b, c, d;
    do {
        version(GNU) asm pure nothrow @nogc {
            "cpuid" : "=a" a, "=b" b, "=c" c, "=d" d : "a" 0x0B, "c" level;
        } else asm pure nothrow @nogc {
            mov EAX, 0x0B;
            mov ECX, level;
            cpuid;
            mov a, EAX;
            mov b, EBX;
            mov c, ECX;
            mov d, EDX;
        }
        if (b!=0) {
           // I'm not sure about this. The docs state that there
           // are 2 hyperthreads per core if HT is factory enabled.
            if (level==0)
                threadsPerCore = b & 0xFFFF;
            else if (level==1) {
                maxThreads = b & 0xFFFF;
                maxCores = maxThreads / threadsPerCore;
            }

        }
        ++level;
    } while (a!=0 || b!=0);

}

void cpuidX86()
{
    uint a, b, c, d;
    uint* venptr = cast(uint*)vendorID.ptr;
    version(GNU)
    {
        asm pure nothrow @nogc { "cpuid" : "=a" max_cpuid, "=b" venptr[0], "=d" venptr[1], "=c" venptr[2] : "a" 0; }
        asm pure nothrow @nogc { "cpuid" : "=a" max_extended_cpuid : "a" 0x8000_0000 : "ebx", "ecx", "edx"; }
    }
    else
    {
        uint a2;
        version(D_InlineAsm_X86)
        {
            asm pure nothrow @nogc {
                mov EAX, 0;
                cpuid;
                mov a, EAX;
                mov EAX, venptr;
                mov [EAX], EBX;
                mov [EAX + 4], EDX;
                mov [EAX + 8], ECX;
            }
        }
        else version(D_InlineAsm_X86_64)
        {
            asm pure nothrow @nogc {
                mov EAX, 0;
                cpuid;
                mov a, EAX;
                mov RAX, venptr;
                mov [RAX], EBX;
                mov [RAX + 4], EDX;
                mov [RAX + 8], ECX;
            }
        }
        asm pure nothrow @nogc {
            mov EAX, 0x8000_0000;
            cpuid;
            mov a2, EAX;
        }
        max_cpuid = a;
        max_extended_cpuid = a2;
    }


    probablyIntel = vendorID == "GenuineIntel";
    probablyAMD = vendorID == "AuthenticAMD";
    uint apic = 0; // brand index, apic id
    version(GNU) asm pure nothrow @nogc {
        "cpuid" : "=a" a, "=b" apic, "=c" miscfeatures, "=d" features : "a" 1;
    } else {
        asm pure nothrow @nogc {
            mov EAX, 1; // model, stepping
            cpuid;
            mov a, EAX;
            mov apic, EBX;
            mov c, ECX;
            mov d, EDX;
        }
        features = d;
        miscfeatures = c;
    }
    stepping = a & 0xF;
    uint fbase = (a >> 8) & 0xF;
    uint mbase = (a >> 4) & 0xF;
    family = ((fbase == 0xF) || (fbase == 0)) ? fbase + (a >> 20) & 0xFF : fbase;
    model = ((fbase == 0xF) || (fbase == 6 && probablyIntel) ) ?
         mbase + ((a >> 12) & 0xF0) : mbase;

    if (max_cpuid >= 7)
    {
        version(GNU) asm pure nothrow @nogc {
            "cpuid" : "=a" a, "=b" extfeatures, "=c" c : "a" 7, "c" 0 : "edx";
        } else {
            uint ext;
            asm pure nothrow @nogc {
                mov EAX, 7; // Structured extended feature leaf.
                mov ECX, 0; // Main leaf.
                cpuid;
                mov ext, EBX; // HLE, AVX2, RTM, etc.
            }
            extfeatures = ext;
        }
    }

    if (miscfeatures & OSXSAVE_BIT)
    {
        version(GNU) asm pure nothrow @nogc {
            "xgetbv" : "=a" a, "=d" d : "c" 0;
        } else asm pure nothrow @nogc {
            mov ECX, 0;
            xgetbv;
            mov d, EDX;
            mov a, EAX;
        }
        xfeatures = cast(ulong)d << 32 | a;
    }
    amdfeatures = 0;
    amdmiscfeatures = 0;
    if (max_extended_cpuid >= 0x8000_0001) {
        version(GNU) asm pure nothrow @nogc {
            "cpuid" : "=a" a, "=c" amdmiscfeatures, "=d" amdfeatures : "a" 0x8000_0001 : "ebx";
        } else {
            asm pure nothrow @nogc {
                mov EAX, 0x8000_0001;
                cpuid;
                mov c, ECX;
                mov d, EDX;
            }
            amdmiscfeatures = c;
            amdfeatures = d;
        }
    }
    // Try to detect fraudulent vendorIDs
    if (amd3dnow) probablyIntel = false;

    if (!probablyIntel && max_extended_cpuid >= 0x8000_0008) {
        // determine max number of cores for AMD
        version(GNU) asm pure nothrow @nogc {
            "cpuid" : "=a" a, "=c" c : "a" 0x8000_0008 : "ebx", "edx";
        } else asm pure nothrow @nogc {
            mov EAX, 0x8000_0008;
            cpuid;
            mov c, ECX;
        }
        uint apicsize = (c>>12) & 0xF;
        if (apicsize == 0) {
            // use legacy method
            if (hyperThreadingBit)  maxCores = c & 0xFF;
            else maxCores = 1;
        } else {
            // maxcores = 2^ apicsize
            maxCores = 1;
            while (apicsize) { maxCores<<=1; --apicsize; }
        }
    }

    if (max_extended_cpuid >= 0x8000_0004) {
        uint* pnb = cast(uint*)processorNameBuffer.ptr;
        version(GNU)
        {
            asm pure nothrow @nogc { "cpuid" : "=a" pnb[0], "=b" pnb[1], "=c" pnb[ 2], "=d" pnb[ 3] : "a" 0x8000_0002; }
            asm pure nothrow @nogc { "cpuid" : "=a" pnb[4], "=b" pnb[5], "=c" pnb[ 6], "=d" pnb[ 7] : "a" 0x8000_0003; }
            asm pure nothrow @nogc { "cpuid" : "=a" pnb[8], "=b" pnb[9], "=c" pnb[10], "=d" pnb[11] : "a" 0x8000_0004; }
        }
        else version(D_InlineAsm_X86)
        {
            asm pure nothrow @nogc {
                push ESI;
                mov ESI, pnb;
                mov EAX, 0x8000_0002;
                cpuid;
                mov [ESI], EAX;
                mov [ESI+4], EBX;
                mov [ESI+8], ECX;
                mov [ESI+12], EDX;
                mov EAX, 0x8000_0003;
                cpuid;
                mov [ESI+16], EAX;
                mov [ESI+20], EBX;
                mov [ESI+24], ECX;
                mov [ESI+28], EDX;
                mov EAX, 0x8000_0004;
                cpuid;
                mov [ESI+32], EAX;
                mov [ESI+36], EBX;
                mov [ESI+40], ECX;
                mov [ESI+44], EDX;
                pop ESI;
            }
        }
        else version(D_InlineAsm_X86_64)
        {
            asm pure nothrow @nogc {
                push RSI;
                mov RSI, pnb;
                mov EAX, 0x8000_0002;
                cpuid;
                mov [RSI], EAX;
                mov [RSI+4], EBX;
                mov [RSI+8], ECX;
                mov [RSI+12], EDX;
                mov EAX, 0x8000_0003;
                cpuid;
                mov [RSI+16], EAX;
                mov [RSI+20], EBX;
                mov [RSI+24], ECX;
                mov [RSI+28], EDX;
                mov EAX, 0x8000_0004;
                cpuid;
                mov [RSI+32], EAX;
                mov [RSI+36], EBX;
                mov [RSI+40], ECX;
                mov [RSI+44], EDX;
                pop RSI;
            }
        }
        // Intel P4 and PM pad at front with spaces.
        // Other CPUs pad at end with nulls.
        int start = 0, end = 0;
        while (processorNameBuffer[start] == ' ') { ++start; }
        while (processorNameBuffer[processorNameBuffer.length-end-1] == 0) { ++end; }
        processorName = cast(string)(processorNameBuffer[start..$-end]);
    } else {
        processorName = "Unknown CPU";
    }
    // Determine cache sizes

    // Intel docs specify that they return 0 for 0x8000_0005.
    // AMD docs do not specify the behaviour for 0004 and 0002.
    // Centaur/VIA and most other manufacturers use the AMD method,
    // except Cyrix MediaGX MMX Enhanced uses their OWN form of CPUID2!
    // NS Geode GX1 provides CyrixCPUID2 _and_ does the same wrong behaviour
    // for CPUID80000005. But Geode GX uses the AMD method

    // Deal with Geode GX1 - make it same as MediaGX MMX.
    if (max_extended_cpuid==0x8000_0005 && max_cpuid==2) {
        max_extended_cpuid = 0x8000_0004;
    }
    // Therefore, we try the AMD method unless it's an Intel chip.
    // If we still have no info, try the Intel methods.
    datacache[0].size = 0;
    if (max_cpuid<2 || !probablyIntel) {
        if (max_extended_cpuid >= 0x8000_0005) {
            getAMDcacheinfo();
        } else if (probablyAMD) {
            // According to AMDProcRecognitionAppNote, this means CPU
            // K5 model 0, or Am5x86 (model 4), or Am4x86DX4 (model 4)
            // Am5x86 has 16Kb 4-way unified data & code cache.
            datacache[0].size = 8;
            datacache[0].associativity = 4;
            datacache[0].lineSize = 32;
        } else {
            // Some obscure CPU.
            // Values for Cyrix 6x86MX (family 6, model 0)
            datacache[0].size = 64;
            datacache[0].associativity = 4;
            datacache[0].lineSize = 32;
        }
    }
    if ((datacache[0].size == 0) && max_cpuid>=4) {
        getcacheinfoCPUID4();
    }
    if ((datacache[0].size == 0) && max_cpuid>=2) {
        getcacheinfoCPUID2();
    }
    if (datacache[0].size == 0) {
        // Pentium, PMMX, late model 486, or an obscure CPU
        if (mmx) { // Pentium MMX. Also has 8kB code cache.
            datacache[0].size = 16;
            datacache[0].associativity = 4;
            datacache[0].lineSize = 32;
        } else { // Pentium 1 (which also has 8kB code cache)
                 // or 486.
            // Cyrix 6x86: 16, 4way, 32 linesize
            datacache[0].size = 8;
            datacache[0].associativity = 2;
            datacache[0].lineSize = 32;
        }
    }
    if (max_cpuid >=0x0B) {
        // For Intel i7 and later, use function 0x0B to determine
        // cores and hyperthreads.
        getCpuInfo0B();
    } else {
        if (hyperThreadingBit) maxThreads = (apic>>>16) & 0xFF;
        else maxThreads = maxCores;
    }
}

// Return true if the cpuid instruction is supported.
// BUG(WONTFIX): Returns false for Cyrix 6x86 and 6x86L. They will be treated as 486 machines.
bool hasCPUID()
{
    version(X86_64)
        return true;
    else
    {
        uint flags;
        version(GNU)
        {
            // http://wiki.osdev.org/CPUID#Checking_CPUID_availability
            // ASM template supports both AT&T and Intel syntax.
            asm nothrow @nogc { "
                pushf{l|d}                 # Save EFLAGS
                pushf{l|d}                 # Store EFLAGS
                xor{l $0x00200000, (%%esp)| dword ptr [esp], 0x00200000}
                                           # Invert the ID bit in stored EFLAGS
                popf{l|d}                  # Load stored EFLAGS (with ID bit inverted)
                pushf{l|d}                 # Store EFLAGS again (ID bit may or may not be inverted)
                pop {%%}eax                # eax = modified EFLAGS (ID bit may or may not be inverted)
                xor {(%%esp), %%eax|eax, [esp]}
                                           # eax = whichever bits were changed
                popf{l|d}                  # Restore original EFLAGS
                " : "=a" flags;
            }
        }
        else version(D_InlineAsm_X86)
        {
            asm nothrow @nogc {
                pushfd;
                pop EAX;
                mov flags, EAX;
                xor EAX, 0x0020_0000;
                push EAX;
                popfd;
                pushfd;
                pop EAX;
                xor flags, EAX;
            }
        }
        return (flags & 0x0020_0000) !=0;
    }
}

} else { // supported X86

    bool hasCPUID() { return false; }

    void cpuidX86()
    {
            datacache[0].size = 8;
            datacache[0].associativity = 2;
            datacache[0].lineSize = 32;
    }
}

/*
// TODO: Implement this function with OS support
void cpuidPPC()
{
    enum :int  { PPC601, PPC603, PPC603E, PPC604,
                 PPC604E, PPC620, PPCG3, PPCG4, PPCG5 }

    // TODO:
    // asm { mfpvr; } returns the CPU version but unfortunately it can
    // only be used in kernel mode. So OS support is required.
    int cputype = PPC603;

    // 601 has a 8KB combined data & code L1 cache.
    uint sizes[] = [4, 8, 16, 16, 32, 32, 32, 32, 64];
    ubyte ways[] = [8, 2,  4,  4,  4,  8,  8,  8,  8];
    uint L2size[]= [0, 0,  0,  0,  0,  0,  0,  256,  512];
    uint L3size[]= [0, 0,  0,  0,  0,  0,  0,  2048,  0];

    datacache[0].size = sizes[cputype];
    datacache[0].associativity = ways[cputype];
    datacache[0].lineSize = (cputype==PPCG5)? 128 :
        (cputype == PPC620 || cputype == PPCG3)? 64 : 32;
    datacache[1].size = L2size[cputype];
    datacache[2].size = L3size[cputype];
    datacache[1].lineSize = datacache[0].lineSize;
    datacache[2].lineSize = datacache[0].lineSize;
}

// TODO: Implement this function with OS support
void cpuidSparc()
{
    // UltaSparcIIi  : L1 = 16,  2way. L2 = 512, 4 way.
    // UltraSparcIII : L1 = 64,  4way. L2= 4096 or 8192.
    // UltraSparcIIIi: L1 = 64,  4way. L2= 1024, 4 way
    // UltraSparcIV  : L1 = 64,  4way. L2 = 16*1024.
    // UltraSparcIV+ : L1 = 64,  4way. L2 = 2048, L3=32*1024.
    // Sparc64V      : L1 = 128, 2way. L2 = 4096 4way.
}
*/

shared static this()
{
    if (hasCPUID()) {
        cpuidX86();
    } else {
        // it's a 386 or 486, or a Cyrix 6x86.
        //Probably still has an external cache.
    }
    if (datacache[0].size==0) {
            // Guess same as Pentium 1.
            datacache[0].size = 8;
            datacache[0].associativity = 2;
            datacache[0].lineSize = 32;
    }
    numCacheLevels = 1;
    // And now fill up all the unused levels with full memory space.
    for (size_t i=1; i< datacache.length; ++i) {
        if (datacache[i].size==0) {
            // Set all remaining levels of cache equal to full address space.
            datacache[i].size = size_t.max/1024;
            datacache[i].associativity = 1;
            datacache[i].lineSize = datacache[i-1].lineSize;
        }
        else
            ++numCacheLevels;
    }
}