This file is indexed.

/usr/lib/gcc/x86_64-linux-gnu/6/include/d/std/concurrency.d is in libgphobos-6-dev 6.4.0-17ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
/**
 * This is a low-level messaging API upon which more structured or restrictive
 * APIs may be built.  The general idea is that every messageable entity is
 * represented by a common handle type called a Tid, which allows messages to
 * be sent to logical threads that are executing in both the current process
 * and in external processes using the same interface.  This is an important
 * aspect of scalability because it allows the components of a program to be
 * spread across available resources with few to no changes to the actual
 * implementation.
 *
 * A logical thread is an execution context that has its own stack and which
 * runs asynchronously to other logical threads.  These may be preemptively
 * scheduled kernel threads, fibers (cooperative user-space threads), or some
 * other concept with similar behavior.
 *
 * The type of concurrency used when logical threads are created is determined
 * by the Scheduler selected at initialization time.  The default behavior is
 * currently to create a new kernel thread per call to spawn, but other
 * schedulers are available that multiplex fibers across the main thread or
 * use some combination of the two approaches.
 *
 * Synposis:
 * ---
 * import std.stdio;
 * import std.concurrency;
 *
 * void spawnedFunc(Tid ownerTid)
 * {
 *     // Receive a message from the owner thread.
 *     receive(
 *         (int i) { writeln("Received the number ", i);}
 *     );
 *
 *     // Send a message back to the owner thread
 *     // indicating success.
 *     send(ownerTid, true);
 * }
 *
 * void main()
 * {
 *     // Start spawnedFunc in a new thread.
 *     auto childTid = spawn(&spawnedFunc, thisTid);
 *
 *     // Send the number 42 to this new thread.
 *     send(childTid, 42);
 *
 *     // Receive the result code.
 *     auto wasSuccessful = receiveOnly!(bool);
 *     assert(wasSuccessful);
 *     writeln("Successfully printed number.");
 * }
 * ---
 *
 * Copyright: Copyright Sean Kelly 2009 - 2014.
 * License:   <a href="http://www.boost.org/LICENSE_1_0.txt">Boost License 1.0</a>.
 * Authors:   Sean Kelly, Alex Rønne Petersen, Martin Nowak
 * Source:    $(PHOBOSSRC std/_concurrency.d)
 */
/*          Copyright Sean Kelly 2009 - 2014.
 * Distributed under the Boost Software License, Version 1.0.
 *    (See accompanying file LICENSE_1_0.txt or copy at
 *          http://www.boost.org/LICENSE_1_0.txt)
 */
module std.concurrency;


public
{
    import std.variant;
}
private
{
    import core.atomic;
    import core.thread;
    import core.sync.mutex;
    import core.sync.condition;
    import std.algorithm;
    import std.datetime;
    import std.exception;
    import std.range;
    import std.string;
    import std.traits;
    import std.typecons;
    import std.typetuple;

    template hasLocalAliasing(T...)
    {
        static if( !T.length )
            enum hasLocalAliasing = false;
        else
            enum hasLocalAliasing = (std.traits.hasUnsharedAliasing!(T[0]) && !is(T[0] == Tid)) ||
                                     std.concurrency.hasLocalAliasing!(T[1 .. $]);
    }

    enum MsgType
    {
        standard,
        priority,
        linkDead,
    }

    struct Message
    {
        MsgType type;
        Variant data;

        this(T...)( MsgType t, T vals )
            if( T.length < 1 )
        {
            static assert( false, "messages must contain at least one item" );
        }

        this(T...)( MsgType t, T vals )
            if( T.length == 1 )
        {
            type = t;
            data = vals[0];
        }

        this(T...)( MsgType t, T vals )
            if( T.length > 1 )
        {
            type = t;
            data = Tuple!(T)( vals );
        }

        @property auto convertsTo(T...)()
        {
            static if( T.length == 1 )
                return is( T[0] == Variant ) ||
                       data.convertsTo!(T);
            else
                return data.convertsTo!(Tuple!(T));
        }

        @property auto get(T...)()
        {
            static if( T.length == 1 )
            {
                static if( is( T[0] == Variant ) )
                    return data;
                else
                    return data.get!(T);
            }
            else
            {
                return data.get!(Tuple!(T));
            }
        }

        auto map(Op)( Op op )
        {
            alias Args = ParameterTypeTuple!(Op);

            static if( Args.length == 1 )
            {
                static if( is( Args[0] == Variant ) )
                    return op( data );
                else
                    return op( data.get!(Args) );
            }
            else
            {
                return op( data.get!(Tuple!(Args)).expand );
            }
        }
    }

    void checkops(T...)( T ops )
    {
        foreach( i, t1; T )
        {
            static assert( isFunctionPointer!t1 || isDelegate!t1 );
            alias a1 = ParameterTypeTuple!(t1);
            alias r1 = ReturnType!(t1);

            static if( i < T.length - 1 && is( r1 == void ) )
            {
                static assert( a1.length != 1 || !is( a1[0] == Variant ),
                               "function with arguments " ~ a1.stringof ~
                               " occludes successive function" );

                foreach( t2; T[i+1 .. $] )
                {
                    static assert( isFunctionPointer!t2 || isDelegate!t2 );
                    alias a2 = ParameterTypeTuple!(t2);

                    static assert( !is( a1 == a2 ),
                                   "function with arguments " ~ a1.stringof ~
                                   " occludes successive function" );
                }
            }
        }
    }

    @property ref ThreadInfo thisInfo()
    {
        if( scheduler is null )
            return ThreadInfo.thisInfo;
        return scheduler.thisInfo;
    }
}


static ~this()
{
    thisInfo.cleanup();
}


//////////////////////////////////////////////////////////////////////////////
// Exceptions
//////////////////////////////////////////////////////////////////////////////


/**
 * Thrown on calls to $(D receiveOnly) if a message other than the type
 * the receiving thread expected is sent.
 */
class MessageMismatch : Exception
{
    this( string msg = "Unexpected message type" )
    {
        super( msg );
    }
}


/**
 * Thrown on calls to $(D receive) if the thread that spawned the receiving
 * thread has terminated and no more messages exist.
 */
class OwnerTerminated : Exception
{
    this( Tid t, string msg = "Owner terminated" )
    {
        super( msg );
        tid = t;
    }

    Tid tid;
}


/**
 * Thrown if a linked thread has terminated.
 */
class LinkTerminated : Exception
{
    this( Tid t, string msg = "Link terminated" )
    {
        super( msg );
        tid = t;
    }

    Tid tid;
}


/**
 * Thrown if a message was sent to a thread via
 * $(XREF concurrency, prioritySend) and the receiver does not have a handler
 * for a message of this type.
 */
class PriorityMessageException : Exception
{
    this( Variant vals )
    {
        super( "Priority message" );
        message = vals;
    }

    /**
     * The message that was sent.
     */
    Variant message;
}


/**
 * Thrown on mailbox crowding if the mailbox is configured with
 * $(D OnCrowding.throwException).
 */
class MailboxFull : Exception
{
    this( Tid t, string msg = "Mailbox full" )
    {
        super( msg );
        tid = t;
    }

    Tid tid;
}


/**
 * Thrown when a Tid is missing, e.g. when $(D ownerTid) doesn't
 * find an owner thread.
 */
class TidMissingException : Exception
{
    this(string msg, string file = __FILE__, size_t line = __LINE__)
    {
        super(msg, file, line);
    }
}


//////////////////////////////////////////////////////////////////////////////
// Thread ID
//////////////////////////////////////////////////////////////////////////////


/**
 * An opaque type used to represent a logical thread.
 */
struct Tid
{
private:
    this( MessageBox m ) @safe
    {
        mbox = m;
    }


    MessageBox  mbox;

public:

    /**
     * Generate a convenient string for identifying this Tid.  This is only
     * useful to see if Tid's that are currently executing are the same or
     * different, e.g. for logging and debugging.  It is potentially possible
     * that a Tid executed in the future will have the same toString() output
     * as another Tid that has already terminated.
     */
    void toString(scope void delegate(const(char)[]) sink)
    {
        import std.format;
        formattedWrite(sink, "Tid(%x)", &mbox);
    }

}


/**
 * Returns the caller's Tid.
 */
@property Tid thisTid() @safe
{
    // TODO: remove when concurrency is safe
    auto trus = delegate() @trusted
    {
        if( thisInfo.ident != Tid.init )
            return thisInfo.ident;
        thisInfo.ident = Tid( new MessageBox );
        return thisInfo.ident;
    };

    return trus();
}

/**
 * Return the Tid of the thread which spawned the caller's thread.
 *
 * Throws: A $(D TidMissingException) exception if
 * there is no owner thread.
 */
@property Tid ownerTid()
{
    enforce!TidMissingException(thisInfo.owner.mbox !is null,
                                  "Error: Thread has no owner thread.");
    return thisInfo.owner;
}

unittest
{
    static void fun()
    {
        string res = receiveOnly!string();
        assert(res == "Main calling");
        ownerTid.send("Child responding");
    }

    assertThrown!TidMissingException(ownerTid);
    auto child = spawn(&fun);
    child.send("Main calling");
    string res = receiveOnly!string();
    assert(res == "Child responding");
}

//////////////////////////////////////////////////////////////////////////////
// Thread Creation
//////////////////////////////////////////////////////////////////////////////

private template isSpawnable(F, T...)
{
    template isParamsImplicitlyConvertible(F1, F2, int i=0)
    {
        alias param1 = ParameterTypeTuple!F1;
        alias param2 = ParameterTypeTuple!F2;
        static if (param1.length != param2.length)
            enum isParamsImplicitlyConvertible = false;
        else static if (param1.length == i)
            enum isParamsImplicitlyConvertible = true;
        else static if (isImplicitlyConvertible!(param2[i], param1[i]))
            enum isParamsImplicitlyConvertible = isParamsImplicitlyConvertible!(F1, F2, i+1);
        else
            enum isParamsImplicitlyConvertible = false;
    }
    enum isSpawnable = isCallable!F
      && is(ReturnType!F == void)
      && isParamsImplicitlyConvertible!(F, void function(T))
      && ( isFunctionPointer!F
        || !hasUnsharedAliasing!F);
}

/**
 * Starts fn(args) in a new logical thread.
 *
 * Executes the supplied function in a new logical thread represented by
 * $(D Tid).  The calling thread is designated as the owner of the new thread.
 * When the owner thread terminates an $(D OwnerTerminated) message will be
 * sent to the new thread, causing an $(D OwnerTerminated) exception to be
 * thrown on $(D receive()).
 *
 * Params:
 *  fn   = The function to execute.
 *  args = Arguments to the function.
 *
 * Returns:
 *  A Tid representing the new logical thread.
 *
 * Notes:
 *  $(D args) must not have unshared aliasing.  In other words, all arguments
 *  to $(D fn) must either be $(D shared) or $(D immutable) or have no
 *  pointer indirection.  This is necessary for enforcing isolation among
 *  threads.
 *
 * Example:
 * ---
 * import std.stdio, std.concurrency;
 *
 * void f1(string str)
 * {
 *     writeln(str);
 * }
 *
 * void f2(char[] str)
 * {
 *     writeln(str);
 * }
 *
 * void main()
 * {
 *     auto str = "Hello, world";
 *
 *     // Works:  string is immutable.
 *     auto tid1 = spawn(&f1, str);
 *
 *     // Fails:  char[] has mutable aliasing.
 *     auto tid2 = spawn(&f2, str.dup);
 * }
 * ---
 */
Tid spawn(F, T...)( F fn, T args )
    if ( isSpawnable!(F, T) )
{
    static assert( !hasLocalAliasing!(T),
                   "Aliases to mutable thread-local data not allowed." );
    return _spawn( false, fn, args );
}


/**
 * Starts fn(args) in a logical thread and will receive a LinkTerminated
 * message when the operation terminates.
 *
 * Executes the supplied function in a new logical thread represented by
 * Tid.  This new thread is linked to the calling thread so that if either
 * it or the calling thread terminates a LinkTerminated message will be sent
 * to the other, causing a LinkTerminated exception to be thrown on receive().
 * The owner relationship from spawn() is preserved as well, so if the link
 * between threads is broken, owner termination will still result in an
 * OwnerTerminated exception to be thrown on receive().
 *
 * Params:
 *  fn   = The function to execute.
 *  args = Arguments to the function.
 *
 * Returns:
 *  A Tid representing the new thread.
 */
Tid spawnLinked(F, T...)( F fn, T args )
    if ( isSpawnable!(F, T) )
{
    static assert( !hasLocalAliasing!(T),
                   "Aliases to mutable thread-local data not allowed." );
    return _spawn( true, fn, args );
}


/*
 *
 */
private Tid _spawn(F, T...)( bool linked, F fn, T args )
    if ( isSpawnable!(F, T) )
{
    // TODO: MessageList and &exec should be shared.
    auto spawnTid = Tid( new MessageBox );
    auto ownerTid = thisTid;

    void exec()
    {
        thisInfo.ident = spawnTid;
        thisInfo.owner = ownerTid;
        fn( args );
    }

    // TODO: MessageList and &exec should be shared.
    if( scheduler !is null )
        scheduler.spawn( &exec );
    else
    {
        auto t = new Thread( &exec );
        t.start();
    }
    thisInfo.links[spawnTid] = linked;
    return spawnTid;
}

unittest
{
    void function()                                fn1;
    void function(int)                             fn2;
    static assert( __traits(compiles, spawn(fn1)));
    static assert( __traits(compiles, spawn(fn2, 2)));
    static assert(!__traits(compiles, spawn(fn1, 1)));
    static assert(!__traits(compiles, spawn(fn2)));

    void delegate(int) shared                      dg1;
    shared(void delegate(int))                     dg2;
    shared(void delegate(long) shared)             dg3;
    shared(void delegate(real, int , long) shared) dg4;
    void delegate(int) immutable                   dg5;
    void delegate(int)                             dg6;
    static assert( __traits(compiles, spawn(dg1, 1)));
    static assert( __traits(compiles, spawn(dg2, 2)));
    static assert( __traits(compiles, spawn(dg3, 3)));
    static assert( __traits(compiles, spawn(dg4, 4, 4, 4)));
    static assert( __traits(compiles, spawn(dg5, 5)));
    static assert(!__traits(compiles, spawn(dg6, 6)));

    auto callable1  = new class{ void opCall(int) shared {} };
    auto callable2  = cast(shared)new class{ void opCall(int) shared {} };
    auto callable3  = new class{ void opCall(int) immutable {} };
    auto callable4  = cast(immutable)new class{ void opCall(int) immutable {} };
    auto callable5  = new class{ void opCall(int) {} };
    auto callable6  = cast(shared)new class{ void opCall(int) immutable {} };
    auto callable7  = cast(immutable)new class{ void opCall(int) shared {} };
    auto callable8  = cast(shared)new class{ void opCall(int) const shared {} };
    auto callable9  = cast(const shared)new class{ void opCall(int) shared {} };
    auto callable10 = cast(const shared)new class{ void opCall(int) const shared {} };
    auto callable11 = cast(immutable)new class{ void opCall(int) const shared {} };
    static assert(!__traits(compiles, spawn(callable1,  1)));
    static assert( __traits(compiles, spawn(callable2,  2)));
    static assert(!__traits(compiles, spawn(callable3,  3)));
    static assert( __traits(compiles, spawn(callable4,  4)));
    static assert(!__traits(compiles, spawn(callable5,  5)));
    static assert(!__traits(compiles, spawn(callable6,  6)));
    static assert(!__traits(compiles, spawn(callable7,  7)));
    static assert( __traits(compiles, spawn(callable8,  8)));
    static assert(!__traits(compiles, spawn(callable9,  9)));
    static assert( __traits(compiles, spawn(callable10, 10)));
    static assert( __traits(compiles, spawn(callable11, 11)));
}


//////////////////////////////////////////////////////////////////////////////
// Sending and Receiving Messages
//////////////////////////////////////////////////////////////////////////////


/**
 * Places the values as a message at the back of tid's message queue.
 *
 * Sends the supplied value to the thread represented by tid.  As with
 * $(XREF concurrency, spawn), $(D T) must not have unshared aliasing.
 */
void send(T...)( Tid tid, T vals )
{
    static assert( !hasLocalAliasing!(T),
                   "Aliases to mutable thread-local data not allowed." );
    _send( tid, vals );
}


/**
 * Places the values as a message on the front of tid's message queue.
 *
 * Send a message to $(D tid) but place it at the front of $(D tid)'s message
 * queue instead of at the back.  This function is typically used for
 * out-of-band communication, to signal exceptional conditions, etc.
 */
void prioritySend(T...)( Tid tid, T vals )
{
    static assert( !hasLocalAliasing!(T),
                   "Aliases to mutable thread-local data not allowed." );
    _send( MsgType.priority, tid, vals );
}


/*
 * ditto
 */
private void _send(T...)( Tid tid, T vals )
{
    _send( MsgType.standard, tid, vals );
}


/*
 * Implementation of send.  This allows parameter checking to be different for
 * both Tid.send() and .send().
 */
private void _send(T...)( MsgType type, Tid tid, T vals )
{
    auto msg = Message( type, vals );
    tid.mbox.put( msg );
}


/**
 * Receives a message from another thread.
 *
 * Receive a message from another thread, or block if no messages of the
 * specified types are available.  This function works by pattern matching
 * a message against a set of delegates and executing the first match found.
 *
 * If a delegate that accepts a $(XREF variant, Variant) is included as
 * the last argument to $(D receive), it will match any message that was not
 * matched by an earlier delegate.  If more than one argument is sent,
 * the $(D Variant) will contain a $(XREF typecons, Tuple) of all values
 * sent.
 *
 * Example:
 * ---
 * import std.stdio;
 * import std.variant;
 * import std.concurrency;
 *
 * void spawnedFunction()
 * {
 *     receive(
 *         (int i) { writeln("Received an int."); },
 *         (float f) { writeln("Received a float."); },
 *         (Variant v) { writeln("Received some other type."); }
 *     );
 * }
 *
 * void main()
 * {
 *      auto tid = spawn(&spawnedFunction);
 *      send(tid, 42);
 * }
 * ---
 */
void receive(T...)( T ops )
in
{
    assert(thisInfo.ident.mbox !is null,
           "Cannot receive a message until a thread was spawned "
           ~ "or thisTid was passed to a running thread.");
}
body
{
    checkops( ops );

    thisInfo.ident.mbox.get( ops );
}


unittest
{
    assert( __traits( compiles,
                      {
                          receive( (Variant x) {} );
                          receive( (int x) {}, (Variant x) {} );
                      } ) );

    assert( !__traits( compiles,
                       {
                           receive( (Variant x) {}, (int x) {} );
                       } ) );

    assert( !__traits( compiles,
                       {
                           receive( (int x) {}, (int x) {} );
                       } ) );
}

// Make sure receive() works with free functions as well.
version (unittest)
{
    private void receiveFunction(int x) {}
}
unittest
{
    assert( __traits( compiles,
                      {
                          receive( &receiveFunction );
                          receive( &receiveFunction, (Variant x) {} );
                      } ) );
}


private template receiveOnlyRet(T...)
{
    static if( T.length == 1 )
        alias receiveOnlyRet = T[0];
    else
        alias receiveOnlyRet = Tuple!(T);
}

/**
 * Receives only messages with arguments of types $(D T).
 *
 * Throws:  $(D MessageMismatch) if a message of types other than $(D T)
 *          is received.
 *
 * Returns: The received message.  If $(D T.length) is greater than one,
 *          the message will be packed into a $(XREF typecons, Tuple).
 *
 * Example:
 * ---
 * import std.concurrency;
 *
 * void spawnedFunc()
 * {
 *     auto msg = receiveOnly!(int, string)();
 *     assert(msg[0] == 42);
 *     assert(msg[1] == "42");
 * }
 *
 * void main()
 * {
 *     auto tid = spawn(&spawnedFunc);
 *     send(tid, 42, "42");
 * }
 * ---
 */
receiveOnlyRet!(T) receiveOnly(T...)()
in
{
    assert(thisInfo.ident.mbox !is null,
           "Cannot receive a message until a thread was spawned "
           ~ "or thisTid was passed to a running thread.");
}
body
{
    Tuple!(T) ret;

    thisInfo.ident.mbox.get(
        ( T val )
        {
            static if( T.length )
                ret.field = val;
        },
        ( LinkTerminated e )
        {
            throw e;
        },
        ( OwnerTerminated e )
        {
            throw e;
        },
        ( Variant val )
        {
            static if (T.length > 1)
                string exp = T.stringof;
            else
                string exp = T[0].stringof;

            throw new MessageMismatch(
                format("Unexpected message type: expected '%s', got '%s'",
                       exp, val.type.toString()));
        } );
    static if( T.length == 1 )
        return ret[0];
    else
        return ret;
}

unittest
{
    static void t1(Tid mainTid)
    {
        try
        {
            receiveOnly!string();
            mainTid.send("");
        }
        catch (Throwable th)
        {
            mainTid.send(th.msg);
        }
    }

    auto tid = spawn(&t1, thisTid);
    tid.send(1);
    string result = receiveOnly!string();
    assert(result == "Unexpected message type: expected 'string', got 'int'");
}

/**
 * Tries to receive but will give up if no matches arrive within duration.
 *
 * Same as $(D receive) except that rather than wait forever for a message,
 * it waits until either it receives a message or the given
 * $(CXREF time, Duration) has passed. It returns $(D true) if it received a
 * message and $(D false) if it timed out waiting for one.
 */
bool receiveTimeout(T...)( Duration duration, T ops )
in
{
    assert(thisInfo.ident.mbox !is null,
           "Cannot receive a message until a thread was spawned "
           ~ "or thisTid was passed to a running thread.");
}
body
{
    checkops( ops );

    return thisInfo.ident.mbox.get( duration, ops );
}

unittest
{
    assert( __traits( compiles,
                      {
                          receiveTimeout( msecs(0), (Variant x) {} );
                          receiveTimeout( msecs(0), (int x) {}, (Variant x) {} );
                      } ) );

    assert( !__traits( compiles,
                       {
                           receiveTimeout( msecs(0), (Variant x) {}, (int x) {} );
                       } ) );

    assert( !__traits( compiles,
                       {
                           receiveTimeout( msecs(0), (int x) {}, (int x) {} );
                       } ) );

    assert( __traits( compiles,
                      {
                          receiveTimeout( msecs(10), (int x) {}, (Variant x) {} );
                      } ) );
}


//////////////////////////////////////////////////////////////////////////////
// MessageBox Limits
//////////////////////////////////////////////////////////////////////////////


/**
 * These behaviors may be specified when a mailbox is full.
 */
enum OnCrowding
{
    block,          /// Wait until room is available.
    throwException, /// Throw a MailboxFull exception.
    ignore          /// Abort the send and return.
}


private
{
    bool onCrowdingBlock( Tid tid )
    {
        return true;
    }


    bool onCrowdingThrow( Tid tid )
    {
        throw new MailboxFull( tid );
    }


    bool onCrowdingIgnore( Tid tid )
    {
        return false;
    }
}


/**
 * Sets a maximum mailbox size.
 *
 * Sets a limit on the maximum number of user messages allowed in the mailbox.
 * If this limit is reached, the caller attempting to add a new message will
 * execute the behavior specified by doThis.  If messages is zero, the mailbox
 * is unbounded.
 *
 * Params:
 *  tid      = The Tid of the thread for which this limit should be set.
 *  messages = The maximum number of messages or zero if no limit.
 *  doThis   = The behavior executed when a message is sent to a full
 *             mailbox.
 */
void setMaxMailboxSize( Tid tid, size_t messages, OnCrowding doThis )
{
    final switch( doThis )
    {
    case OnCrowding.block:
        return tid.mbox.setMaxMsgs( messages, &onCrowdingBlock );
    case OnCrowding.throwException:
        return tid.mbox.setMaxMsgs( messages, &onCrowdingThrow );
    case OnCrowding.ignore:
        return tid.mbox.setMaxMsgs( messages, &onCrowdingIgnore );
    }
}


/**
 * Sets a maximum mailbox size.
 *
 * Sets a limit on the maximum number of user messages allowed in the mailbox.
 * If this limit is reached, the caller attempting to add a new message will
 * execute onCrowdingDoThis.  If messages is zero, the mailbox is unbounded.
 *
 * Params:
 *  tid      = The Tid of the thread for which this limit should be set.
 *  messages = The maximum number of messages or zero if no limit.
 *  onCrowdingDoThis = The routine called when a message is sent to a full
 *                     mailbox.
 */
void setMaxMailboxSize( Tid tid, size_t messages, bool function(Tid) onCrowdingDoThis )
{
    tid.mbox.setMaxMsgs( messages, onCrowdingDoThis );
}


//////////////////////////////////////////////////////////////////////////////
// Name Registration
//////////////////////////////////////////////////////////////////////////////


private
{
    __gshared Tid[string]   tidByName;
    __gshared string[][Tid] namesByTid;
    __gshared Mutex         registryLock;
}


shared static this()
{
    registryLock = new Mutex;
}


private void unregisterMe()
{
    auto me = thisTid;

    synchronized( registryLock )
    {
        if( auto allNames = me in namesByTid )
        {
            foreach( name; *allNames )
                tidByName.remove( name );
            namesByTid.remove( me );
        }
    }
}


/**
 * Associates name with tid.
 *
 * Associates name with tid in a process-local map.  When the thread
 * represented by tid terminates, any names associated with it will be
 * automatically unregistered.
 *
 * Params:
 *  name = The name to associate with tid.
 *  tid  = The tid register by name.
 *
 * Returns:
 *  true if the name is available and tid is not known to represent a
 *  defunct thread.
 */
bool register( string name, Tid tid )
{
    synchronized( registryLock )
    {
        if( name in tidByName )
            return false;
        if( tid.mbox.isClosed )
            return false;
        namesByTid[tid] ~= name;
        tidByName[name] = tid;
        return true;
    }
}


/**
 * Removes the registered name associated with a tid.
 *
 * Params:
 *  name = The name to unregister.
 *
 * Returns:
 *  true if the name is registered, false if not.
 */
bool unregister( string name )
{
    synchronized( registryLock )
    {
        if( auto tid = name in tidByName )
        {
            auto allNames = *tid in namesByTid;
            auto pos      = countUntil( *allNames, name );
            remove!(SwapStrategy.unstable)( *allNames, pos );
            tidByName.remove( name );
            return true;
        }
        return false;
    }
}


/**
 * Gets the Tid associated with name.
 *
 * Params:
 *  name = The name to locate within the registry.
 *
 * Returns:
 *  The associated Tid or Tid.init if name is not registered.
 */
Tid locate( string name )
{
    synchronized( registryLock )
    {
        if( auto tid = name in tidByName )
            return *tid;
        return Tid.init;
    }
}


//////////////////////////////////////////////////////////////////////////////
// Scheduler
//////////////////////////////////////////////////////////////////////////////


/**
 * Encapsulates all implementation-level data needed for scheduling.
 *
 * When definining a Scheduler, an instance of this struct must be associated
 * with each logical thread.  It contains all implementation-level information
 * needed by the internal API.
 */
struct ThreadInfo
{
    Tid       ident;
    bool[Tid] links;
    Tid       owner;

    /**
     * Gets a thread-local instance of ThreadInfo.
     *
     * Gets a thread-local instance of ThreadInfo, which should be used as the
     * default instance when info is requested for a thread not created by the
     * Scheduler.
     */
    static @property ref thisInfo() nothrow
    {
        static ThreadInfo val;
        return val;
    }


    /**
     * Cleans up this ThreadInfo.
     *
     * This must be called when a scheduled thread terminates.  It tears down
     * the messaging system for the thread and notifies interested parties of
     * the thread's termination.
     */
    void cleanup()
    {
        if( ident.mbox !is null )
            ident.mbox.close();
        foreach( tid; links.keys )
            _send( MsgType.linkDead, tid, ident );
        if( owner != Tid.init )
            _send( MsgType.linkDead, owner, ident );
        unregisterMe(); // clean up registry entries
    }
}


/**
 * A Scheduler controls how threading is performed by spawn.
 *
 * Implementing a Scheduler allows the concurrency mechanism used by this
 * module to be customized according to different needs.  By default, a call
 * to spawn will create a new kernel thread that executes the supplied routine
 * and terminates when finished.  But it is possible to create Schedulers that
 * reuse threads, that multiplex Fibers (coroutines) across a single thread,
 * or any number of other approaches.  By making the choice of Scheduler a
 * user-level option, std.concurrency may be used for far more types of
 * application than if this behavior were predefined.
 *
 * Example:
 * ---
 * import std.concurrency;
 * import std.stdio;
 *
 * void main()
 * {
 *     scheduler = new FiberScheduler;
 *     scheduler.start(
 *     {
 *         writeln("the rest of main goes here");
 *     });
 * }
 * ---
 *
 * Some schedulers have a dispatching loop that must run if they are to work
 * properly, so for the sake of consistency, when using a scheduler, start()
 * must be called within main().  This yields control to the scheduler and
 * will ensure that any spawned threads are executed in an expected manner.
 */
interface Scheduler
{
    /**
     * Spawns the supplied op and starts the Scheduler.
     *
     * This is intended to be called at the start of the program to yield all
     * scheduling to the active Scheduler instance.  This is necessary for
     * schedulers that explicitly dispatch threads rather than simply relying
     * on the operating system to do so, and so start should always be called
     * within main() to begin normal program execution.
     *
     * Params:
     *  op = A wrapper for whatever the main thread would have done in the
     *       absence of a custom scheduler.  It will be automatically executed
     *       via a call to spawn by the Scheduler.
     */
    void start( void delegate() op );

    /**
     * Assigns a logical thread to execute the supplied op.
     *
     * This routine is called by spawn.  It is expected to instantiate a new
     * logical thread and run the supplied operation.  This thread must call
     * thisInfo.cleanup() when the thread terminates if the scheduled thread
     * is not a kernel thread--all kernel threads will have their ThreadInfo
     * cleaned up automatically by a thread-local destructor.
     *
     * Params:
     *  op = The function to execute.  This may be the actual function passed
     *       by the user to spawn itself, or may be a wrapper function.
     */
    void spawn( void delegate() op );

    /**
     * Yields execution to another logical thread.
     *
     * This routine is called at various points within concurrency-aware APIs
     * to provide a scheduler a chance to yield execution when using some sort
     * of cooperative multithreading model.  If this is not appropriate, such
     * as when each logical thread is backed by a dedicated kernel thread,
     * this routine may be a no-op.
     */
    void yield() nothrow;

    /**
     * Returns an appropriate ThreadInfo instance.
     *
     * Returns an instance of ThreadInfo specific to the logical thread that
     * is calling this routine or, if the calling thread was not create by
     * this scheduler, returns ThreadInfo.thisInfo instead.
     */
    @property ref ThreadInfo thisInfo() nothrow;

    /**
     * Creates a Condition varialbe analog for signaling.
     *
     * Creates a new Condition variable analog which is used to check for and
     * to signal the addition of messages to a thread's message queue.  Like
     * yield, some schedulers may need to define custom behavior so that calls
     * to Condition.wait() yield to another thread when no new messages are
     * available instead of blocking.
     *
     * Params:
     *  m = The Mutex that will be associated with this condition.  It will be
     *      locked prior to any operation on the condition, and so in some
     *      cases a Scheduler may need to hold this reference and unlock the
     *      mutex before yielding execution to another logical thread.
     */
    Condition newCondition( Mutex m ) nothrow;
}


/**
 * An example Scheduler using kernel threads.
 *
 * This is an example Scheduler that mirrors the default scheduling behavior
 * of creating one kernel thread per call to spawn.  It is fully functional
 * and may be instantiated and used, but is not a necessary part of the
 * default functioning of this module.
 */
class ThreadScheduler :
    Scheduler
{
    /**
     * This simply runs op directly, since no real scheduling is needed by
     * this approach.
     */
    void start( void delegate() op )
    {
        op();
    }


    /**
     * Creates a new kernel thread and assigns it to run the supplied op.
     */
    void spawn( void delegate() op )
    {
        auto t = new Thread( op );
        t.start();
    }


    /**
     * This scheduler does no explicit multiplexing, so this is a no-op.
     */
    void yield() nothrow
    {
        // no explicit yield needed
    }


    /**
     * Returns ThreadInfo.thisInfo, since it is a thread-local instance of
     * ThreadInfo, which is the correct behavior for this scheduler.
     */
    @property ref ThreadInfo thisInfo() nothrow
    {
        return ThreadInfo.thisInfo;
    }


    /**
     * Creates a new Condition variable.  No custom behavior is needed here.
     */
    Condition newCondition( Mutex m ) nothrow
    {
        return new Condition( m );
    }
}


/**
 * An example Scheduler using Fibers.
 *
 * This is an example scheduler that creates a new Fiber per call to spawn
 * and multiplexes the execution of all fibers within the main thread.
 */
class FiberScheduler :
    Scheduler
{
    /**
     * This creates a new Fiber for the supplied op and then starts the
     * dispatcher.
     */
    void start( void delegate() op )
    {
        create( op );
        dispatch();
    }


    /**
     * This created a new Fiber for the supplied op and adds it to the
     * dispatch list.
     */
    void spawn( void delegate() op ) nothrow
    {
        create( op );
        yield();
    }


    /**
     * If the caller is a scheduled Fiber, this yields execution to another
     * scheduled Fiber.
     */
    void yield() nothrow
    {
        // NOTE: It's possible that we should test whether the calling Fiber
        //       is an InfoFiber before yielding, but I think it's reasonable
        //       that any (non-Generator) fiber should yield here.
        if(Fiber.getThis())
            Fiber.yield();
    }


    /**
     * Returns an appropriate ThreadInfo instance.
     *
     * Returns a ThreadInfo instance specific to the calling Fiber if the
     * Fiber was created by this dispatcher, otherwise it returns
     * ThreadInfo.thisInfo.
     */
    @property ref ThreadInfo thisInfo() nothrow
    {
        auto f = cast(InfoFiber) Fiber.getThis();

        if( f !is null )
            return f.info;
        return ThreadInfo.thisInfo;
    }


    /**
     * Returns a Condition analog that yields when wait or notify is called.
     */
    Condition newCondition( Mutex m ) nothrow
    {
        return new FiberCondition( m );
    }


private:
    static class InfoFiber :
        Fiber
    {
        ThreadInfo info;

        this( void delegate() op ) nothrow
        {
            super( op );
        }
    }


    class FiberCondition :
        Condition
    {
        this( Mutex m ) nothrow
        {
            super(m);
            notified = false;
        }

        override void wait() nothrow
        {
            scope(exit) notified = false;

            while( !notified )
                switchContext();
        }

        override bool wait( Duration period ) nothrow
        {
            scope(exit) notified = false;

            for( auto limit = Clock.currSystemTick + period;
                 !notified && !period.isNegative;
                 period = limit - Clock.currSystemTick )
            {
                yield();
            }
            return notified;
        }

        override void notify() nothrow
        {
            notified = true;
            switchContext();
        }

        override void notifyAll() nothrow
        {
            notified = true;
            switchContext();
        }

    private:
        final void switchContext() nothrow
        {
            mutex_nothrow.unlock_nothrow();
            scope(exit) mutex_nothrow.lock_nothrow();
            yield();
        }

        private bool notified;
    }


private:
    final void dispatch()
    {
        import std.algorithm : remove;

        while( m_fibers.length > 0 )
        {
            auto t = m_fibers[m_pos].call( Fiber.Rethrow.no );
            if (t !is null && !(cast(OwnerTerminated) t))
                throw t;
            if( m_fibers[m_pos].state == Fiber.State.TERM )
            {
                if( m_pos >= (m_fibers = remove( m_fibers, m_pos )).length )
                    m_pos = 0;
            }
            else if( m_pos++ >= m_fibers.length - 1 )
            {
                m_pos = 0;
            }
        }
    }


    final void create( void delegate() op ) nothrow
    {
        void wrap()
        {
            scope(exit)
            {
                thisInfo.cleanup();
            }
            op();
        }
        m_fibers ~= new InfoFiber( &wrap );
    }


private:
    Fiber[] m_fibers;
    size_t  m_pos;
}


unittest
{
    static void receive(Condition cond, ref size_t received)
    {
        while (true)
        {
            synchronized (cond.mutex)
            {
                cond.wait();
                ++received;
            }
        }
    }

    static void send(Condition cond, ref size_t sent)
    {
        while (true)
        {
            synchronized (cond.mutex)
            {
                ++sent;
                cond.notify();
            }
        }
    }

    auto fs = new FiberScheduler;
    auto mtx = new Mutex;
    auto cond = fs.newCondition(mtx);

    size_t received, sent;
    auto waiter = new Fiber({receive(cond, received);}), notifier = new Fiber({send(cond, sent);});
    waiter.call();
    assert(received == 0);
    notifier.call();
    assert(sent == 1);
    assert(received == 0);
    waiter.call();
    assert(received == 1);
    waiter.call();
    assert(received == 1);
}


/**
 * Sets the Scheduler behavior within the program.
 *
 * This variable sets the Scheduler behavior within this program.  Typically,
 * when setting a Scheduler, scheduler.start() should be called in main.  This
 * routine will not return until program execution is complete.
 */
__gshared Scheduler scheduler;


//////////////////////////////////////////////////////////////////////////////
// Generator
//////////////////////////////////////////////////////////////////////////////


/**
 * If the caller is a Fiber and is not a Generator, this function will call
 * scheduler.yield() or Fiber.yield(), as appropriate.
 */
void yield() nothrow
{
    auto fiber = Fiber.getThis();
    if (!(cast(IsGenerator) fiber))
    {
        if (scheduler is null)
        {
            if (fiber)
                return Fiber.yield();
        }
        else scheduler.yield();
    }
}


/// Used to determine whether a Generator is running.
private interface IsGenerator {}


/**
 * A Generator is a Fiber that periodically returns values of type T to the
 * caller via yield.  This is represented as an InputRange.
 *
 * Example:
 * ---
 * import std.concurrency;
 * import std.stdio;
 *
 *
 * void main()
 * {
 *     auto tid = spawn(
 *     {
 *         while (true)
 *         {
 *             writeln(receiveOnly!int());
 *         }
 *     });
 *
 *     auto r = new Generator!int(
 *     {
 *         foreach (i; 1 .. 10)
 *             yield(i);
 *     });
 *
 *     foreach (e; r)
 *     {
 *         tid.send(e);
 *     }
 * }
 * ---
 */
class Generator(T) :
    Fiber, IsGenerator
{
    /**
     * Initializes a generator object which is associated with a static
     * D function.  The function will be called once to prepare the range
     * for iteration.
     *
     * Params:
     *  fn = The fiber function.
     *
     * In:
     *  fn must not be null.
     */
    this(void function() fn)
    {
        super(fn);
        call();
    }


    /**
     * Initializes a generator object which is associated with a static
     * D function.  The function will be called once to prepare the range
     * for iteration.
     *
     * Params:
     *  fn = The fiber function.
     *  sz = The stack size for this fiber.
     *
     * In:
     *  fn must not be null.
     */
    this(void function() fn, size_t sz)
    {
        super(fn, sz);
        call();
    }


    /**
     * Initializes a generator object which is associated with a dynamic
     * D function.  The function will be called once to prepare the range
     * for iteration.
     *
     * Params:
     *  dg = The fiber function.
     *
     * In:
     *  dg must not be null.
     */
    this(void delegate() dg)
    {
        super(dg);
        call();
    }


    /**
     * Initializes a generator object which is associated with a dynamic
     * D function.  The function will be called once to prepare the range
     * for iteration.
     *
     * Params:
     *  dg = The fiber function.
     *  sz = The stack size for this fiber.
     *
     * In:
     *  dg must not be null.
     */
    this(void delegate() dg, size_t sz)
    {
        super(dg, sz);
        call();
    }


    /**
     * Returns true if the generator is empty.
     */
    final bool empty() @property
    {
        return m_value is null || state == State.TERM;
    }


    /**
     * Obtains the next value from the underlying function.
     */
    final void popFront()
    {
        call();
    }


    /**
     * Returns the most recently generated value.
     */
    final T front() @property
    {
        return *m_value;
    }


private:
    T*  m_value;
}


/**
 * Yields a value of type T to the caller of the currently executing
 * generator.
 *
 * Params:
 *  value = The value to yield.
 */
void yield(T)(ref T value)
{
    Generator!T cur = cast(Generator!T) Fiber.getThis();
    if (cur !is null && cur.state == Fiber.State.EXEC)
    {
        cur.m_value = &value;
        return Fiber.yield();
    }
    throw new Exception("yield(T) called with no active generator for the supplied type",
                        __FILE__, __LINE__);
}


/// ditto
void yield(T)(T value)
{
    yield(value);
}


version (Win64) {
    // fibers are broken on Win64
} else version (Win32) {
    // fibers are broken in Win32 under server 2012: bug 13821
} else unittest {
    import core.exception;
    import std.exception;

    static void testScheduler(Scheduler s)
    {
        scheduler = s;
        scheduler.start(
        {
            auto tid = spawn(
            {
                int i;

                try
                {
                    for (i = 1; i < 10; i++)
                    {
                        assertNotThrown!AssertError(
                            assert(receiveOnly!int() == i));
                    }
                }
                catch (OwnerTerminated e)
                {

                }

                // i will advance 1 past the last value expected
                assert(i == 4);
            });

            auto r = new Generator!int(
            {
                assertThrown!Exception(yield(2.0));
                yield(); // ensure this is a no-op
                yield(1);
                yield(); // also once something has been yielded
                yield(2);
                yield(3);
            });

            foreach (e; r)
            {
                tid.send(e);
            }
        });
        scheduler = null;
    }

    testScheduler(new ThreadScheduler);
    testScheduler(new FiberScheduler);
}


//////////////////////////////////////////////////////////////////////////////
// MessageBox Implementation
//////////////////////////////////////////////////////////////////////////////


private
{
    /*
     * A MessageBox is a message queue for one thread.  Other threads may send
     * messages to this owner by calling put(), and the owner receives them by
     * calling get().  The put() call is therefore effectively shared and the
     * get() call is effectively local.  setMaxMsgs may be used by any thread
     * to limit the size of the message queue.
     */
    class MessageBox
    {
        this() @trusted /* TODO: make @safe after relevant druntime PR gets merged */
        {
            m_lock      = new Mutex;
            m_closed    = false;

            if( scheduler is null )
            {
                m_putMsg  = new Condition( m_lock );
                m_notFull = new Condition( m_lock );
            }
            else
            {
                m_putMsg  = scheduler.newCondition( m_lock );
                m_notFull = scheduler.newCondition( m_lock );
            }
        }

        ///
        deprecated("isClosed can't be used with a const MessageBox")
        final @property bool isClosed() const
        {
            synchronized( m_lock )
            {
                return m_closed;
            }
        }

        ///
        final @property bool isClosed()
        {
            synchronized( m_lock )
            {
                return m_closed;
            }
        }

        /*
         * Sets a limit on the maximum number of user messages allowed in the
         * mailbox.  If this limit is reached, the caller attempting to add
         * a new message will execute call.  If num is zero, there is no limit
         * on the message queue.
         *
         * Params:
         *  num  = The maximum size of the queue or zero if the queue is
         *         unbounded.
         *  call = The routine to call when the queue is full.
         */
        final void setMaxMsgs( size_t num, bool function(Tid) call )
        {
            synchronized( m_lock )
            {
                m_maxMsgs   = num;
                m_onMaxMsgs = call;
            }
        }


        /*
         * If maxMsgs is not set, the message is added to the queue and the
         * owner is notified.  If the queue is full, the message will still be
         * accepted if it is a control message, otherwise onCrowdingDoThis is
         * called.  If the routine returns true, this call will block until
         * the owner has made space available in the queue.  If it returns
         * false, this call will abort.
         *
         * Params:
         *  msg = The message to put in the queue.
         *
         * Throws:
         *  An exception if the queue is full and onCrowdingDoThis throws.
         */
        final void put( ref Message msg )
        {
            synchronized( m_lock )
            {
                // TODO: Generate an error here if m_closed is true, or maybe
                //       put a message in the caller's queue?
                if( !m_closed )
                {
                    while( true )
                    {
                        if( isPriorityMsg( msg ) )
                        {
                            m_sharedPty.put( msg );
                            m_putMsg.notify();
                            return;
                        }
                        if( !mboxFull() || isControlMsg( msg ) )
                        {
                            m_sharedBox.put( msg );
                            m_putMsg.notify();
                            return;
                        }
                        if( m_onMaxMsgs !is null && !m_onMaxMsgs( thisTid ) )
                        {
                            return;
                        }
                        m_putQueue++;
                        m_notFull.wait();
                        m_putQueue--;
                    }
                }
            }
        }


        /*
         * Matches ops against each message in turn until a match is found.
         *
         * Params:
         *  ops = The operations to match.  Each may return a bool to indicate
         *        whether a message with a matching type is truly a match.
         *
         * Returns:
         *  true if a message was retrieved and false if not (such as if a
         *  timeout occurred).
         *
         * Throws:
         *  LinkTerminated if a linked thread terminated, or OwnerTerminated
         * if the owner thread terminates and no existing messages match the
         * supplied ops.
         */
        final bool get(T...)( scope T vals )
        {
            static assert( T.length );

            static if( isImplicitlyConvertible!(T[0], Duration) )
            {
                alias Ops = TypeTuple!(T[1 .. $]);
                alias ops = vals[1 .. $];
                assert( vals[0] >= msecs(0) );
                enum timedWait = true;
                Duration period = vals[0];
            }
            else
            {
                alias Ops = TypeTuple!(T);
                alias ops = vals[0 .. $];
                enum timedWait = false;
            }

            bool onStandardMsg( ref Message msg )
            {
                foreach( i, t; Ops )
                {
                    alias Args = ParameterTypeTuple!(t);
                    auto  op   = ops[i];

                    if( msg.convertsTo!(Args) )
                    {
                        static if( is( ReturnType!(t) == bool ) )
                        {
                            return msg.map( op );
                        }
                        else
                        {
                            msg.map( op );
                            return true;
                        }
                    }
                }
                return false;
            }

            bool onLinkDeadMsg( ref Message msg )
            {
                assert( msg.convertsTo!(Tid) );
                auto tid = msg.get!(Tid);

                if( bool* pDepends = (tid in thisInfo.links) )
                {
                    auto depends = *pDepends;
                    thisInfo.links.remove( tid );
                    // Give the owner relationship precedence.
                    if( depends && tid != thisInfo.owner )
                    {
                        auto e = new LinkTerminated( tid );
                        auto m = Message( MsgType.standard, e );
                        if( onStandardMsg( m ) )
                            return true;
                        throw e;
                    }
                }
                if( tid == thisInfo.owner )
                {
                    thisInfo.owner = Tid.init;
                    auto e = new OwnerTerminated( tid );
                    auto m = Message( MsgType.standard, e );
                    if( onStandardMsg( m ) )
                        return true;
                    throw e;
                }
                return false;
            }

            bool onControlMsg( ref Message msg )
            {
                switch( msg.type )
                {
                case MsgType.linkDead:
                    return onLinkDeadMsg( msg );
                default:
                    return false;
                }
            }

            bool scan( ref ListT list )
            {
                for( auto range = list[]; !range.empty; )
                {
                    // Only the message handler will throw, so if this occurs
                    // we can be certain that the message was handled.
                    scope(failure) list.removeAt( range );

                    if( isControlMsg( range.front ) )
                    {
                        if( onControlMsg( range.front ) )
                        {
                            // Although the linkDead message is a control message,
                            // it can be handled by the user.  Since the linkDead
                            // message throws if not handled, if we get here then
                            // it has been handled and we can return from receive.
                            // This is a weird special case that will have to be
                            // handled in a more general way if more are added.
                            if( !isLinkDeadMsg( range.front ) )
                            {
                                list.removeAt( range );
                                continue;
                            }
                            list.removeAt( range );
                            return true;
                        }
                        range.popFront();
                        continue;
                    }
                    else
                    {
                        if( onStandardMsg( range.front ) )
                        {
                            list.removeAt( range );
                            return true;
                        }
                        range.popFront();
                        continue;
                    }
                }
                return false;
            }


            bool pty( ref ListT list )
            {
                if( !list.empty )
                {
                    auto range = list[];

                    if( onStandardMsg( range.front ) )
                    {
                        list.removeAt( range );
                        return true;
                    }
                    if( range.front.convertsTo!(Throwable) )
                        throw range.front.get!(Throwable);
                    else if( range.front.convertsTo!(shared(Throwable)) )
                        throw range.front.get!(shared(Throwable));
                    else throw new PriorityMessageException( range.front.data );
                }
                return false;
            }

            static if( timedWait )
            {
                auto limit = Clock.currSystemTick + period;
            }

            while( true )
            {
                ListT arrived;

                if( pty( m_localPty ) ||
                    scan( m_localBox ) )
                {
                    return true;
                }
                yield();
                synchronized( m_lock )
                {
                    updateMsgCount();
                    while( m_sharedPty.empty && m_sharedBox.empty )
                    {
                        // NOTE: We're notifying all waiters here instead of just
                        //       a few because the onCrowding behavior may have
                        //       changed and we don't want to block sender threads
                        //       unnecessarily if the new behavior is not to block.
                        //       This will admittedly result in spurious wakeups
                        //       in other situations, but what can you do?
                        if( m_putQueue && !mboxFull() )
                            m_notFull.notifyAll();
                        static if( timedWait )
                        {
                            if( period.isNegative || !m_putMsg.wait( period ) )
                                return false;
                        }
                        else
                        {
                            m_putMsg.wait();
                        }
                    }
                    m_localPty.put( m_sharedPty );
                    arrived.put( m_sharedBox );
                }
                if( m_localPty.empty )
                {
                    scope(exit) m_localBox.put( arrived );
                    if( scan( arrived ) )
                        return true;
                    else
                    {
                        static if( timedWait )
                        {
                            period = limit - Clock.currSystemTick;
                        }
                        continue;
                    }
                }
                m_localBox.put( arrived );
                pty( m_localPty );
                return true;
            }
        }


        /*
         * Called on thread termination.  This routine processes any remaining
         * control messages, clears out message queues, and sets a flag to
         * reject any future messages.
         */
        final void close()
        {
            void onLinkDeadMsg( ref Message msg )
            {
                assert( msg.convertsTo!(Tid) );
                auto tid = msg.get!(Tid);

                thisInfo.links.remove( tid );
                if( tid == thisInfo.owner )
                    thisInfo.owner = Tid.init;
            }

            void sweep( ref ListT list )
            {
                for( auto range = list[]; !range.empty; range.popFront() )
                {
                    if( range.front.type == MsgType.linkDead )
                        onLinkDeadMsg( range.front );
                }
            }

            ListT arrived;

            sweep( m_localBox );
            synchronized( m_lock )
            {
                arrived.put( m_sharedBox );
                m_closed = true;
            }
            m_localBox.clear();
            sweep( arrived );
        }


    private:
        //////////////////////////////////////////////////////////////////////
        // Routines involving shared data, m_lock must be held.
        //////////////////////////////////////////////////////////////////////


        bool mboxFull()
        {
            return m_maxMsgs &&
                   m_maxMsgs <= m_localMsgs + m_sharedBox.length;
        }


        void updateMsgCount()
        {
            m_localMsgs = m_localBox.length;
        }


    private:
        //////////////////////////////////////////////////////////////////////
        // Routines involving local data only, no lock needed.
        //////////////////////////////////////////////////////////////////////


        pure final bool isControlMsg( ref Message msg )
        {
            return msg.type != MsgType.standard &&
                   msg.type != MsgType.priority;
        }


        pure final bool isPriorityMsg( ref Message msg )
        {
            return msg.type == MsgType.priority;
        }


        pure final bool isLinkDeadMsg( ref Message msg )
        {
            return msg.type == MsgType.linkDead;
        }


    private:
        //////////////////////////////////////////////////////////////////////
        // Type declarations.
        //////////////////////////////////////////////////////////////////////


        alias OnMaxFn = bool function(Tid);
        alias ListT   = List!(Message);

    private:
        //////////////////////////////////////////////////////////////////////
        // Local data, no lock needed.
        //////////////////////////////////////////////////////////////////////


        ListT       m_localBox;
        ListT       m_localPty;


    private:
        //////////////////////////////////////////////////////////////////////
        // Shared data, m_lock must be held on access.
        //////////////////////////////////////////////////////////////////////


        Mutex       m_lock;
        Condition   m_putMsg;
        Condition   m_notFull;
        size_t      m_putQueue;
        ListT       m_sharedBox;
        ListT       m_sharedPty;
        OnMaxFn     m_onMaxMsgs;
        size_t      m_localMsgs;
        size_t      m_maxMsgs;
        bool        m_closed;

    }


    /*
     *
     */
    struct List(T)
    {
        struct Range
        {
            @property bool empty() const
            {
                return !m_prev.next;
            }

            @property ref T front()
            {
                enforce( m_prev.next );
                return m_prev.next.val;
            }

            @property void front( T val )
            {
                enforce( m_prev.next );
                m_prev.next.val = val;
            }

            void popFront()
            {
                enforce( m_prev.next );
                m_prev = m_prev.next;
            }

            //T moveFront()
            //{
            //    enforce( m_prev.next );
            //    return move( m_prev.next.val );
            //}

            private this( Node* p )
            {
                m_prev = p;
            }

            private Node* m_prev;
        }


        /*
         *
         */
        void put( T val )
        {
            put( newNode( val ) );
        }


        /*
         *
         */
        void put( ref List!(T) rhs )
        {
            if( !rhs.empty )
            {
                put( rhs.m_first );
                while( m_last.next !is null )
                {
                    m_last = m_last.next;
                    m_count++;
                }
                rhs.m_first = null;
                rhs.m_last  = null;
                rhs.m_count = 0;
            }
        }


        /*
         *
         */
        Range opSlice()
        {
            return Range( cast(Node*) &m_first );
        }


        /*
         *
         */
        void removeAt( Range r )
        {
            assert( m_count );
            Node* n = r.m_prev;
            enforce( n && n.next );

            if( m_last is m_first )
                m_last = null;
            else if( m_last is n.next )
                m_last = n;
            Node* to_free = n.next;
            n.next = n.next.next;
            freeNode( to_free );
            m_count--;
        }


        /*
         *
         */
        @property size_t length()
        {
            return m_count;
        }


        /*
         *
         */
        void clear()
        {
            m_first = m_last = null;
            m_count = 0;
        }


        /*
         *
         */
        @property bool empty()
        {
            return m_first is null;
        }


    private:
        struct Node
        {
            Node*   next;
            T       val;

            this( T v )
            {
                val = v;
            }
        }

        static shared struct SpinLock
        {
            void lock() { while (!cas(&locked, false, true)) { Thread.yield(); } }
            void unlock() { atomicStore!(MemoryOrder.rel)(locked, false); }
            bool locked;
        }
        static shared SpinLock sm_lock;
        static shared Node* sm_head;

        Node* newNode(T v)
        {
            Node *n;
            {
                sm_lock.lock();
                scope (exit) sm_lock.unlock();

                if (sm_head)
                {
                    n = cast(Node*)sm_head;
                    sm_head = sm_head.next;
                }
            }
            if (n)
                *n = Node(v);
            else
                n = new Node(v);
            return n;
        }

        void freeNode(Node* n)
        {
            // destroy val to free any owned GC memory
            destroy(n.val);

            sm_lock.lock();
            scope (exit) sm_lock.unlock();

            auto sn = cast(shared(Node)*)n;
            sn.next = sm_head;
            sm_head = sn;
        }


        /*
         *
         */
        void put( Node* n )
        {
            m_count++;
            if( !empty )
            {
                m_last.next = n;
                m_last = n;
                return;
            }
            m_first = n;
            m_last = n;
        }


        Node*   m_first;
        Node*   m_last;
        size_t  m_count;
    }
}


version( unittest )
{
    import std.stdio;

    void testfn( Tid tid )
    {
        receive( (float val) { assert(0); },
                 (int val, int val2)
                 {
                     assert( val == 42 && val2 == 86 );
                 } );
        receive( (Tuple!(int, int) val)
                 {
                     assert( val[0] == 42 &&
                             val[1] == 86 );
                 } );
        receive( (Variant val) {} );
        receive( (string val)
                 {
                     if( "the quick brown fox" != val )
                         return false;
                     return true;
                 },
                 (string val)
                 {
                     assert( false );
                 } );
        prioritySend( tid, "done" );
    }

    void runTest( Tid tid )
    {
        send( tid, 42, 86 );
        send( tid, tuple(42, 86) );
        send( tid, "hello", "there" );
        send( tid, "the quick brown fox" );
        receive( (string val) { assert(val == "done"); } );
    }


    void simpleTest()
    {
        auto tid = spawn( &testfn, thisTid );
        runTest( tid );

        // Run the test again with a limited mailbox size.
        tid = spawn( &testfn, thisTid );
        setMaxMailboxSize( tid, 2, OnCrowding.block );
        runTest( tid );
    }


    unittest
    {
        simpleTest();
    }


    unittest
    {
        scheduler = new ThreadScheduler;
        simpleTest();
        scheduler = null;
    }
}

//////////////////////////////////////////////////////////////////////////////
// initOnce
//////////////////////////////////////////////////////////////////////////////

private @property Mutex initOnceLock()
{
    __gshared Mutex lock;
    if (auto mtx = atomicLoad!(MemoryOrder.acq)(*cast(shared)&lock))
        return mtx;
    auto mtx = new Mutex;
    if (cas(cast(shared)&lock, cast(shared)null, cast(shared)mtx))
        return mtx;
    return atomicLoad!(MemoryOrder.acq)(*cast(shared)&lock);
}

/**
 * Initializes $(D_PARAM var) with the lazy $(D_PARAM init) value in a
 * thread-safe manner.
 *
 * The implementation guarantees that all threads simultaneously calling
 * initOnce with the same $(D_PARAM var) argument block until $(D_PARAM var) is
 * fully initialized. All side-effects of $(D_PARAM init) are globally visible
 * afterwards.
 *
 * Params:
 *   var = The variable to initialize
 *   init = The lazy initializer value
 *
 * Returns:
 *   A reference to the initialized variable
 */
auto ref initOnce(alias var)(lazy typeof(var) init)
{
    return initOnce!var(init, initOnceLock);
}

/// A typical use-case is to perform lazy but thread-safe initialization.
unittest
{
    static class MySingleton
    {
        static MySingleton instance()
        {
            static __gshared MySingleton inst;
            return initOnce!inst(new MySingleton);
        }
    }
    assert(MySingleton.instance !is null);
}

unittest
{
    static class MySingleton
    {
        static MySingleton instance()
        {
            static __gshared MySingleton inst;
            return initOnce!inst(new MySingleton);
        }
    private:
        this() { val = ++cnt; }
        size_t val;
        static __gshared size_t cnt;
    }

    foreach (_; 0 .. 10)
        spawn({ownerTid.send(MySingleton.instance.val);});
    foreach (_; 0 .. 10)
        assert(receiveOnly!size_t == MySingleton.instance.val);
    assert(MySingleton.cnt == 1);
}

/**
 * Same as above, but takes a separate mutex instead of sharing one among
 * all initOnce instances.
 *
 * This should be used to avoid dead-locks when the $(D_PARAM init)
 * expression waits for the result of another thread that might also
 * call initOnce. Use with care.
 *
 * Params:
 *   var = The variable to initialize
 *   init = The lazy initializer value
 *   mutex = A mutex to prevent race conditions
 *
 * Returns:
 *   A reference to the initialized variable
 */
auto ref initOnce(alias var)(lazy typeof(var) init, Mutex mutex)
{
    // check that var is global, can't take address of a TLS variable
    static assert(is(typeof({__gshared p = &var;})), "var must be 'static shared' or '__gshared'.");
    import core.atomic;

    static shared bool flag;
    if (!atomicLoad!(MemoryOrder.acq)(flag))
    {
        synchronized (mutex)
        {
            if (!atomicLoad!(MemoryOrder.acq)(flag))
            {
                var = init;
                atomicStore!(MemoryOrder.rel)(flag, true);
            }
        }
    }
    return var;
}

/// Use a separate mutex when init blocks on another thread that might also call initOnce.
unittest
{
    static shared bool varA, varB;
    __gshared Mutex m;
    m = new Mutex;

    spawn({
        // use a different mutex for varB to avoid a dead-lock
        initOnce!varB(true, m);
        ownerTid.send(true);
    });
    // init depends on the result of the spawned thread
    initOnce!varA(receiveOnly!bool);
    assert(varA == true);
    assert(varB == true);
}

unittest
{
     static shared bool a;
     __gshared bool b;
    static bool c;
    bool d;
    initOnce!a(true);
    initOnce!b(true);
    static assert(!__traits(compiles, initOnce!c(true))); // TLS
    static assert(!__traits(compiles, initOnce!d(true))); // local variable
}