This file is indexed.

/usr/lib/gcc/x86_64-linux-gnu/6/include/d/std/internal/digest/sha_SSSE3.d is in libgphobos-6-dev 6.4.0-17ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
// Written in the D programming language.

/**
 * Computes SHA1 digests of arbitrary data, using an optimized algorithm with SSSE3 instructions.
 *
 * Authors:
 * The general idea is described by Dean Gaudet.
 * Another important observation is published by Max Locktyukhin.
 * (Both implementations are public domain.)
 * Translation to X86 and D by Kai Nacke <kai@redstar.de>
 *
 * References:
 *      $(LINK2 http://arctic.org/~dean/crypto/sha1.html)
 *      $(LINK2 http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/, Fast implementation of SHA1)
 */
module std.internal.digest.sha_SSSE3;

version(D_PIC)
{
    // Do not use (Bug9378).
}
else version(D_InlineAsm_X86)
{
    private version = USE_SSSE3;
    private version = _32Bit;
}
else version(D_InlineAsm_X86_64)
{
    private version = USE_SSSE3;
    private version = _64Bit;
}

/*
 * The idea is quite simple. The SHA-1 specification defines the following message schedule:
 *     W[i] = (W[i-3] ^ W[i-8]  ^ W[i-14] ^ W[i-16]) rol 1
 *
 * To employ SSE, simply write down the formula four times:
 *     W[i  ] = (W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16]) rol 1
 *     W[i+1] = (W[i-2] ^ W[i-7] ^ W[i-13] ^ W[i-15]) rol 1
 *     W[i+2] = (W[i-1] ^ W[i-6] ^ W[i-12] ^ W[i-14]) rol 1
 *     W[i+3] = (W[i  ] ^ W[i-5] ^ W[i-11] ^ W[i-13]) rol 1
 * The last formula requires value W[i] computed with the first formula.
 * Because the xor operation and the rotate operation are commutative, we can replace the
 * last formula with
 *     W[i+3] = (     0 ^ W[i-5] ^ W[i-11] ^ W[i-13]) rol 1
 * and then calculate
 *     W[i+3] ^= W[i] rol 1
 * which unfortunately requires many additional operations. This approach was described by
 * Dean Gaudet.
 *
 * Max Locktyukhin observed that
 *     W[i] = W[i-A] ^ W[i-B]
 * is equivalent to
 *     W[i] = W[i-2*A] ^ W[i-2*B]
 * (if the indices are still in valid ranges). Using this observation, the formula is
 * translated to
 *     W[i] = (W[i-6] ^ W[i-16] ^ W[i-28] ^ W[i-32]) rol 2
 * Again, to employ SSE the formula is used four times.
 *
 * Later on, the expression W[i] + K(i) is used. (K(i) is the constant used in round i.)
 * Once the 4 W[i] are calculated, we can also add the four K(i) values with one SSE instruction.
 *
 * The 32bit and 64bit implementations are almost identical. The main difference is that there
 * are only 8 XMM registers in 32bit mode. Therefore, space on the stack is needed to save
 * computed values.
 */

version(USE_SSSE3)
{
    /*
     * The general idea is to use the XMM registers as a sliding window over
     * message schedule. XMM0 to XMM7 are used to store the last 64 byte of
     * the message schedule. In 64 bit mode this is fine because of the number of
     * registers. The main difference of the 32 bit code is that a part of the
     * calculated message schedule is saved on the stack because 2 temporary
     * registers are needed.
     */

    /* Number of message words we are precalculating. */
    private immutable int PRECALC_AHEAD = 16;

    /* T1 and T2 are used for intermediate results of computations. */
    private immutable string T1 = "EAX";
    private immutable string T2 = "EBX";

    /* The registers used for the SHA-1 variables. */
    private immutable string A = "ECX";
    private immutable string B = "ESI";
    private immutable string C = "EDI";
    private immutable string D = "EBP";
    private immutable string E = "EDX";

    /* */
    version(_32Bit)
    {
        private immutable string SP = "ESP";
        private immutable string BUFFER_PTR = "EAX";
        private immutable string STATE_PTR = "EBX";

        // Control byte for shuffle instruction (only used in round 0-15)
        private immutable string X_SHUFFLECTL = "XMM6";

        // Round constant (only used in round 0-15)
        private immutable string X_CONSTANT = "XMM7";
    }
    version(_64Bit)
    {
        private immutable string SP = "RSP";
        private immutable string BUFFER_PTR = "R9";
        private immutable string STATE_PTR = "R8";

        // Registers for temporary results (XMM10 and XMM11 are also used temporary)
        private immutable string W_TMP = "XMM8";
        private immutable string W_TMP2 = "XMM9";

        // Control byte for shuffle instruction (only used in round 0-15)
        private immutable string X_SHUFFLECTL = "XMM12";

        // Round constant
        private immutable string X_CONSTANT = "XMM13";
    }

    /* The control words for the byte shuffle instruction. */
    align(16) private immutable uint[4] bswap_shufb_ctl =
    [
        0x0001_0203, 0x0405_0607, 0x0809_0a0b, 0x0c0d_0e0f
    ];

    /* The round constants. */
    align(16) private immutable uint[16] constants =
    [
        // Constants for round 0-19
        0x5a827999, 0x5a827999, 0x5a827999, 0x5a827999,
        // Constants for round 20-39
        0x6ed9eba1, 0x6ed9eba1, 0x6ed9eba1, 0x6ed9eba1,
        // Constants for round 40-59
        0x8f1bbcdc, 0x8f1bbcdc, 0x8f1bbcdc, 0x8f1bbcdc,
        // Constants for round 60-79
        0xca62c1d6, 0xca62c1d6, 0xca62c1d6, 0xca62c1d6
    ];

    /** Simple version to produce numbers < 100 as string. */
    private nothrow pure string to_string(uint i)
    {
        assert(i < 100);
        string s;
        if (i >= 10)
            s ~= cast(char)('0' + (i / 10) % 10);
        return s ~ cast(char)('0' + i % 10);
    }

    /** Returns the reference to constant used in round i. */
    private nothrow pure string constant(uint i)
    {
        return "[constants + 16*"~to_string(i/20)~"]";
    }

    /** Returns the XMM register number used in round i */
    private nothrow pure uint regno(uint i)
    {
        return (i/4)&7;
    }

    /** Returns reference to storage of vector W[i..i+4]. */
    private nothrow pure string WiV(uint i)
    {
        return "["~SP~" + WI_PTR + "~to_string((i/4)&7)~"*16]";
    }

    /** Returns reference to storage of vector (W + K)[i..i+4]. */
    private nothrow pure string WiKiV(uint i)
    {
        return "["~SP~" + WI_PLUS_KI_PTR + "~to_string((i/4)&3)~"*16]";
    }

    /** Returns reference to storage of value W[i] + K[i]. */
    private nothrow pure string WiKi(uint i)
    {
        return "["~SP~" + WI_PLUS_KI_PTR + 4*"~to_string(i&15)~"]";
    }

    /**
     * Chooses the instruction sequence based on the 32bit or 64bit model.
     */
    private nothrow pure string[] swt3264(string[] insn32, string[] insn64)
    {
        version(_32Bit)
        {
            return insn32;
        }
        version(_64Bit)
        {
            return insn64;
        }
    }

    /**
     * Flattens the instruction sequence and wraps it in an asm block.
     */
    private nothrow pure string wrap(string[] insn)
    {
        string s = "asm pure nothrow @nogc {";
        foreach (t; insn) s ~= (t ~ "; \n");
        s ~= "}";
        return s;
        // Is not CTFE:
        // return "asm pure nothrow @nogc { " ~ join(insn, "; \n") ~ "}";
    }

    /**
     * Weaves the 2 instruction sequences together.
     */
    private nothrow pure string[] weave(string[] seq1, string[] seq2, uint dist = 1)
    {
        import std.algorithm : min;

        string[] res = [];
        auto i1 = 0, i2 = 0;
        while (i1 < seq1.length || i2 < seq2.length)
        {
            if (i2 < seq2.length)
            {
                res ~= seq2[i2..i2+1];
                i2 += 1;
            }
            if (i1 < seq1.length)
            {
                res ~= seq1[i1..std.algorithm.min(i1+dist,$)];
                i1 += dist;
            }
        }
        return res;
    }

    /**
     * Generates instructions to load state from memory into registers.
     */
    private nothrow pure string[] loadstate(string base, string a, string b, string c, string d, string e)
    {
        return ["mov "~a~",["~base~" + 0*4]",
                "mov "~b~",["~base~" + 1*4]",
                "mov "~c~",["~base~" + 2*4]",
                "mov "~d~",["~base~" + 3*4]",
                "mov "~e~",["~base~" + 4*4]" ];
    }

    /**
     * Generates instructions to update state from registers, saving result in memory.
     */
    private nothrow pure string[] savestate(string base, string a, string b, string c, string d, string e)
    {
        return ["add ["~base~" + 0*4],"~a,
                "add ["~base~" + 1*4],"~b,
                "add ["~base~" + 2*4],"~c,
                "add ["~base~" + 3*4],"~d,
                "add ["~base~" + 4*4],"~e ];
    }

    /** Calculates Ch(x, y, z) = z ^ (x & (y ^ z)) */
    private nothrow pure string[] Ch(string x, string y, string z)
    {
        return ["mov "~T1~","~y,
                "xor "~T1~","~z,
                "and "~T1~","~x,
                "xor "~T1~","~z ];
    }

    /** Calculates Parity(x, y, z) = x ^ y ^ z */
    private nothrow pure string[] Parity(string x, string y, string z)
    {
        return ["mov "~T1~","~z,
                "xor "~T1~","~y,
                "xor "~T1~","~x ];
    }

    /** Calculates Maj(x, y, z) = (x & y) | (z & (x ^ y)) */
    private nothrow pure string[] Maj(string x, string y, string z)
    {
        return ["mov "~T1~","~y,
                "mov "~T2~","~x,
                "or  "~T1~","~x,
                "and "~T2~","~y,
                "and "~T1~","~z,
                "or  "~T1~","~T2 ];
    }

    /** Returns function for round i. Function returns result in T1 and may destroy T2. */
    private nothrow pure string[] F(int i, string b, string c, string d)
    {
        string[] insn;
        if (i >=  0 && i <= 19) insn = Ch(b, c, d);
        else if (i >= 20 && i <= 39) insn = Parity(b, c, d);
        else if (i >= 40 && i <= 59) insn = Maj(b, c, d);
        else if (i >= 60 && i <= 79) insn = Parity(b, c, d);
        else assert(false, "Coding error");
        return insn;
    }

    /** Returns instruction used to setup a round. */
    private nothrow pure string[] xsetup(int i)
    {
        if (i == 0)
        {
            return swt3264(["movdqa "~X_SHUFFLECTL~",[bswap_shufb_ctl]",
                             "movdqa "~X_CONSTANT~","~constant(i)],
                            ["movdqa "~X_SHUFFLECTL~",[bswap_shufb_ctl]",
                             "movdqa "~X_CONSTANT~","~constant(i)]);
        }
        version(_64Bit)
        {
            if (i%20 == 0)
            {
                return ["movdqa "~X_CONSTANT~","~constant(i)];
            }
        }
        return [];
    }

    /**
     * Loads the message words and performs the little to big endian conversion.
     * Requires that the shuffle control word and the round constant is loaded
     * into required XMM register. The BUFFER_PTR register must point to the
     * buffer.
     */
    private nothrow pure string[] precalc_00_15(int i)
    {
        int regno = regno(i);

        string W = "XMM" ~ to_string(regno);
        version(_32Bit)
        {
            string W_TMP = "XMM" ~ to_string(regno+2);
        }
        version(_64Bit)
        {
            string W_TMP = "XMM" ~ to_string(regno+8);
        }

        if ((i & 3) == 0)
        {
            return ["movdqu "~W~",["~BUFFER_PTR~" + "~to_string(regno)~"*16]"];
        }
        else if ((i & 3) == 1)
        {
            return ["pshufb "~W~","~X_SHUFFLECTL] ~
                    swt3264(["movdqa "~WiV(i)~","~W], []);
        }
        else if ((i & 3) == 2)
        {
            return ["movdqa "~W_TMP~","~W,
                    "paddd "~W_TMP~","~X_CONSTANT,
                   ];
        }
        else
        {
            return ["movdqa "~WiKiV(i)~","~W_TMP,
                   ];
        }
    }

    /**
     * Done on 4 consequtive W[i] values in a single XMM register
     *  W[i  ] = (W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16]) rol 1
     *  W[i+1] = (W[i-2] ^ W[i-7] ^ W[i-13] ^ W[i-15]) rol 1
     *  W[i+2] = (W[i-1] ^ W[i-6] ^ W[i-12] ^ W[i-14]) rol 1
     *  W[i+3] = (   0   ^ W[i-5] ^ W[i-11] ^ W[i-13]) rol 1
     *
     * This additional calculation unfortunately requires many additional operations
     *  W[i+3] ^= W[i] rol 1
     *
     * Once we have 4 W[i] values in XMM we can also add four K values with one instruction
     *   W[i:i+3] += {K,K,K,K}
     */
    private nothrow pure string[] precalc_16_31(int i)
    {
        int regno = regno(i);

        string W = "XMM" ~ to_string(regno);
        string W_minus_4 = "XMM" ~ to_string((regno-1)&7);
        string W_minus_8 = "XMM" ~ to_string((regno-2)&7);
        string W_minus_12 = "XMM" ~ to_string((regno-3)&7);
        string W_minus_16 = "XMM" ~ to_string((regno-4)&7);
        version(_32Bit)
        {
            string W_TMP = "XMM" ~ to_string((regno+1)&7);
            string W_TMP2 = "XMM" ~ to_string((regno+2)&7);
        }

        if ((i & 3) == 0)
        {
            return ["movdqa "~W~","~W_minus_12,
                    "palignr "~W~","~W_minus_16~",8",   // W[i] = W[i-14]
                    "pxor "~W~","~W_minus_16,           // W[i] ^= W[i-16]
                    "pxor "~W~","~W_minus_8,            // W[i] ^= W[i-8]
                    "movdqa "~W_TMP~","~W_minus_4,
            ];
        }
        else if ((i & 3) == 1)
        {
            return ["psrldq "~W_TMP~",4",               // W[i-3]
                    "pxor "~W~","~W_TMP,                // W[i] ^= W[i-3]
                    "movdqa "~W_TMP~","~W,
                    "psrld "~W~",31",
                    "pslld "~W_TMP~",1",
            ];
        }
        else if ((i & 3) == 2)
        {
            return ["por "~W~","~W_TMP,
                    "movdqa "~W_TMP~","~W,
                    "pslldq "~W_TMP~",12",
                    "movdqa "~W_TMP2~","~W_TMP,
                    "pslld "~W_TMP~",1",
            ];
        }
        else
        {
            return ["psrld "~W_TMP2~",31",
                    "por "~W_TMP~","~W_TMP2,
                    "pxor "~W~","~W_TMP,
                    "movdqa "~W_TMP~","~W ] ~
                   swt3264(["movdqa "~WiV(i)~","~W,
                            "paddd "~W_TMP~","~constant(i) ],
                           ["paddd "~W_TMP~","~X_CONSTANT ]) ~
                   ["movdqa "~WiKiV(i)~","~W_TMP];
        }
    }

    /** Performs the main calculation as decribed above. */
    private nothrow pure string[] precalc_32_79(int i)
    {
        int regno = regno(i);

        string W = "XMM" ~ to_string(regno);
        string W_minus_4 = "XMM" ~ to_string((regno-1)&7);
        string W_minus_8 = "XMM" ~ to_string((regno-2)&7);
        string W_minus_16 = "XMM" ~ to_string((regno-4)&7);
        version(_32Bit)
        {
            string W_minus_28 = "[ESP + WI_PTR + "~ to_string((regno-7)&7)~"*16]";
            string W_minus_32 = "[ESP + WI_PTR + "~ to_string((regno-8)&7)~"*16]";
            string W_TMP = "XMM" ~ to_string((regno+1)&7);
            string W_TMP2 = "XMM" ~ to_string((regno+2)&7);
        }
        version(_64Bit)
        {
            string W_minus_28 = "XMM" ~ to_string((regno-7)&7);
            string W_minus_32 = "XMM" ~ to_string((regno-8)&7);
        }

        if ((i & 3) == 0)
        {
            return swt3264(["movdqa "~W~","~W_minus_32], []) ~
                   ["movdqa "~W_TMP~","~W_minus_4,
                    "pxor "~W~","~W_minus_28,         // W is W_minus_32 before xor
                    "palignr "~W_TMP~","~W_minus_8~",8",
            ];
        }
        else if ((i & 3) == 1)
        {
            return ["pxor "~W~","~W_minus_16,
                    "pxor "~W~","~W_TMP,
                    "movdqa "~W_TMP~","~W,
            ];
        }
        else if ((i & 3) == 2)
        {
            return ["psrld "~W~",30",
                    "pslld "~W_TMP~",2",
                    "por "~W_TMP~","~W,
            ];
        }
        else
        {
            if (i < 76)
                return ["movdqa "~W~","~W_TMP] ~
                       swt3264(["movdqa "~WiV(i)~","~W,
                                "paddd "~W_TMP~","~constant(i)],
                               ["paddd "~W_TMP~","~X_CONSTANT]) ~
                       ["movdqa "~WiKiV(i)~","~W_TMP];
            else
                return swt3264(["paddd "~W_TMP~","~constant(i)],
                               ["paddd "~W_TMP~","~X_CONSTANT]) ~
                       ["movdqa "~WiKiV(i)~","~W_TMP];
        }
    }

    /** Choose right precalc method. */
    private nothrow pure string[] precalc(int i)
    {
        if (i >= 0 && i < 16) return precalc_00_15(i);
        if (i >= 16 && i < 32) return precalc_16_31(i);
        if (i >= 32 && i < 80) return precalc_32_79(i);
        return [];
    }

    /**
     * Return code for round i and i+1.
     * Performs the following rotation:
     * in=>out: A=>D, B=>E, C=>A, D=>B, E=>C
     */
    private nothrow pure string[] round(int i, string a, string b, string c, string d, string e)
    {
        return xsetup(PRECALC_AHEAD + i) ~
               weave(F(i, b, c, d) ~ // Returns result in T1; may destroy T2
               ["add "~e~","~WiKi(i),
                "ror "~b~",2",
                "mov "~T2~","~a,
                "add "~d~","~WiKi(i+1),
                "rol "~T2~",5",
                "add "~e~","~T1 ],
                precalc(PRECALC_AHEAD + i), 2) ~
               weave(
               ["add "~T2~","~e,  // T2 = (A <<< 5) + F(B, C, D) + Wi + Ki + E
                "mov "~e~","~T2,
                "rol "~T2~",5",
                "add "~d~","~T2 ] ~
               F(i+1, a, b, c) ~ // Returns result in T1; may destroy T2
               ["add "~d~","~T1,
                "ror "~a~",2"],
                precalc(PRECALC_AHEAD + i+1), 2);
    }

    // Offset into stack (see below)
    version(_32Bit)
    {
        private enum { STATE_OFS = 4, WI_PLUS_KI_PTR = 8, WI_PTR = 72 };
    }
    version(_64Bit)
    {
        private enum { WI_PLUS_KI_PTR = 0 };
    }

    /** The prologue sequence. */
    private nothrow pure string[] prologue()
    {
        version(_32Bit)
        {
            /*
             * Parameters:
             *   EAX contains pointer to input buffer
             *
             * Stack layout as follows:
             * +----------------+
             * | ptr to state   |
             * +----------------+
             * | return address |
             * +----------------+
             * | EBP            |
             * +----------------+
             * | ESI            |
             * +----------------+
             * | EDI            |
             * +----------------+
             * | EBX            |
             * +----------------+
             * | Space for      |
             * | Wi             | <- ESP+72
             * +----------------+
             * | Space for      |
             * | Wi+Ki          | <- ESP+8
             * +----------------+ <- 16byte aligned
             * | ptr to state   | <- ESP+4
             * +----------------+
             * | old ESP        | <- ESP
             * +----------------+
             */
            static assert(BUFFER_PTR == "EAX");
            static assert(STATE_PTR == "EBX");
            return [// Save registers according to calling convention
                    "push EBP",
                    "push ESI",
                    "push EDI",
                    "push EBX",
                    // Load parameters
                    "mov EBX, [ESP + 5*4]", //pointer to state
                    // Align stack
                    "mov EBP, ESP",
                    "sub ESP, 4*16 + 8*16",
                    "and ESP, 0xffff_fff0",
                    "push EBX",
                    "push EBP",
            ];
        }
        version(_64Bit)
        {
            /*
             * Parameters:
             *   RSI contains pointer to state
             *   RDI contains pointer to input buffer
             *
             * Stack layout as follows:
             * +----------------+
             * | return address |
             * +----------------+
             * | RBP            |
             * +----------------+
             * | RBX            |
             * +----------------+
             * | Unused         |
             * +----------------+
             * | Space for      |
             * | Wi+Ki          | <- RSP
             * +----------------+ <- 16byte aligned
             */
            return [// Save registers according to calling convention
                    "push RBP",
                    "push RBX",
                    // Save parameters
                    "mov "~STATE_PTR~", RSI", //pointer to state
                    "mov "~BUFFER_PTR~", RDI", //pointer to buffer
                    // Align stack
                    "sub RSP, 4*16+8",
            ];
        }
    }

    /**
      * The epilogue sequence. Just pop the saved registers from stack and return to caller.
      */
    private nothrow pure string[] epilogue()
    {
        version(_32Bit)
        {
            return ["pop ESP",
                    "pop EBX",
                    "pop EDI",
                    "pop ESI",
                    "pop EBP",
                    "ret 4",
                   ];
        }
        version(_64Bit)
        {
            return ["add RSP,4*16+8",
                    "pop RBX",
                    "pop RBP",
                    "ret 0",
                   ];
        }
    }

    /**
     *
     */
    public void transformSSSE3(uint[5]* state, const(ubyte[64])* buffer) pure nothrow @nogc
    {
        mixin(wrap(["naked;"] ~ prologue()));
        // Precalc first 4*16=64 bytes
        mixin(wrap(xsetup(0)));
        mixin(wrap(weave(precalc(0)~precalc(1)~precalc(2)~precalc(3),
                         precalc(4)~precalc(5)~precalc(6)~precalc(7))));
        mixin(wrap(weave(loadstate(STATE_PTR, A, B, C, D, E),
                   weave(precalc(8)~precalc(9)~precalc(10)~precalc(11),
                         precalc(12)~precalc(13)~precalc(14)~precalc(15)))));
        // Round 1
        mixin(wrap(round( 0, A, B, C, D, E)));
        mixin(wrap(round( 2, D, E, A, B, C)));
        mixin(wrap(round( 4, B, C, D, E, A)));
        mixin(wrap(round( 6, E, A, B, C, D)));
        mixin(wrap(round( 8, C, D, E, A, B)));
        mixin(wrap(round(10, A, B, C, D, E)));
        mixin(wrap(round(12, D, E, A, B, C)));
        mixin(wrap(round(14, B, C, D, E, A)));
        mixin(wrap(round(16, E, A, B, C, D)));
        mixin(wrap(round(18, C, D, E, A, B)));
        // Round 2
        mixin(wrap(round(20, A, B, C, D, E)));
        mixin(wrap(round(22, D, E, A, B, C)));
        mixin(wrap(round(24, B, C, D, E, A)));
        mixin(wrap(round(26, E, A, B, C, D)));
        mixin(wrap(round(28, C, D, E, A, B)));
        mixin(wrap(round(30, A, B, C, D, E)));
        mixin(wrap(round(32, D, E, A, B, C)));
        mixin(wrap(round(34, B, C, D, E, A)));
        mixin(wrap(round(36, E, A, B, C, D)));
        mixin(wrap(round(38, C, D, E, A, B)));
        // Round 3
        mixin(wrap(round(40, A, B, C, D, E)));
        mixin(wrap(round(42, D, E, A, B, C)));
        mixin(wrap(round(44, B, C, D, E, A)));
        mixin(wrap(round(46, E, A, B, C, D)));
        mixin(wrap(round(48, C, D, E, A, B)));
        mixin(wrap(round(50, A, B, C, D, E)));
        mixin(wrap(round(52, D, E, A, B, C)));
        mixin(wrap(round(54, B, C, D, E, A)));
        mixin(wrap(round(56, E, A, B, C, D)));
        mixin(wrap(round(58, C, D, E, A, B)));
        // Round 4
        mixin(wrap(round(60, A, B, C, D, E)));
        mixin(wrap(round(62, D, E, A, B, C)));
        mixin(wrap(round(64, B, C, D, E, A)));
        mixin(wrap(round(66, E, A, B, C, D)));
        mixin(wrap(round(68, C, D, E, A, B)));
        mixin(wrap(round(70, A, B, C, D, E)));
        mixin(wrap(round(72, D, E, A, B, C)));
        mixin(wrap(round(74, B, C, D, E, A)));
        mixin(wrap(round(76, E, A, B, C, D)));
        mixin(wrap(round(78, C, D, E, A, B)));
        version(_32Bit)
        {
            // Load pointer to state
            mixin(wrap(["mov "~STATE_PTR~",[ESP + STATE_OFS]"]));
        }
        mixin(wrap(savestate(STATE_PTR, A, B, C, D, E)));
        mixin(wrap(epilogue()));
    }
}