This file is indexed.

/usr/lib/gcc/x86_64-linux-gnu/6/include/d/std/internal/math/errorfunction.d is in libgphobos-6-dev 6.4.0-17ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
/**
 * Error Functions and Normal Distribution.
 *
 * License: $(WEB boost.org/LICENSE_1_0.txt, Boost License 1.0).
 * Copyright: Based on the CEPHES math library, which is
 *            Copyright (C) 1994 Stephen L. Moshier (moshier@world.std.com).
 * Authors:   Stephen L. Moshier, ported to D by Don Clugston
 */
/**
 * Macros:
 *  NAN = $(RED NAN)
 *  SUP = <span style="vertical-align:super;font-size:smaller">$0</span>
 *  GAMMA =  &#915;
 *  INTEGRAL = &#8747;
 *  INTEGRATE = $(BIG &#8747;<sub>$(SMALL $1)</sub><sup>$2</sup>)
 *  POWER = $1<sup>$2</sup>
 *  BIGSUM = $(BIG &Sigma; <sup>$2</sup><sub>$(SMALL $1)</sub>)
 *  CHOOSE = $(BIG &#40;) <sup>$(SMALL $1)</sup><sub>$(SMALL $2)</sub> $(BIG &#41;)
 *  TABLE_SV = <table border=1 cellpadding=4 cellspacing=0>
 *      <caption>Special Values</caption>
 *      $0</table>
 *  SVH = $(TR $(TH $1) $(TH $2))
 *  SV  = $(TR $(TD $1) $(TD $2))
 */
module std.internal.math.errorfunction;
import std.math;

pure:
nothrow:
@safe:
@nogc:

private {
immutable real EXP_2  = 0.13533528323661269189L; /* exp(-2) */
enum real SQRT2PI = 2.50662827463100050242E0L; // sqrt(2pi)


enum real MAXLOG = 0x1.62e42fefa39ef358p+13L;  // log(real.max)
enum real MINLOG = -0x1.6436716d5406e6d8p+13L; // log(real.min*real.epsilon) = log(smallest denormal)
}

T rationalPoly(T)(T x, const(T) [] numerator, const(T) [] denominator) pure nothrow
{
    return poly(x, numerator)/poly(x, denominator);
}


private {

/* erfc(x) = exp(-x^2) P(1/x)/Q(1/x)
   1/8 <= 1/x <= 1
   Peak relative error 5.8e-21  */
immutable real [10] P = [ -0x1.30dfa809b3cc6676p-17, 0x1.38637cd0913c0288p+18,
   0x1.2f015e047b4476bp+22, 0x1.24726f46aa9ab08p+25, 0x1.64b13c6395dc9c26p+27,
   0x1.294c93046ad55b5p+29, 0x1.5962a82f92576dap+30, 0x1.11a709299faba04ap+31,
   0x1.11028065b087be46p+31, 0x1.0d8ef40735b097ep+30
];

immutable real [11] Q = [ 0x1.14d8e2a72dec49f4p+19, 0x1.0c880ff467626e1p+23,
   0x1.04417ef060b58996p+26, 0x1.404e61ba86df4ebap+28, 0x1.0f81887bc82b873ap+30,
   0x1.4552a5e39fb49322p+31, 0x1.11779a0ceb2a01cep+32, 0x1.3544dd691b5b1d5cp+32,
   0x1.a91781f12251f02ep+31, 0x1.0d8ef3da605a1c86p+30, 1.0
];


/* erfc(x) = exp(-x^2) 1/x R(1/x^2) / S(1/x^2)
   1/128 <= 1/x < 1/8
   Peak relative error 1.9e-21  */
immutable real [5] R = [ 0x1.b9f6d8b78e22459ep-6, 0x1.1b84686b0a4ea43ap-1,
   0x1.b8f6aebe96000c2ap+1, 0x1.cb1dbedac27c8ec2p+2, 0x1.cf885f8f572a4c14p+1
];

immutable real [6] S = [
   0x1.87ae3cae5f65eb5ep-5, 0x1.01616f266f306d08p+0, 0x1.a4abe0411eed6c22p+2,
   0x1.eac9ce3da600abaap+3, 0x1.5752a9ac2faebbccp+3, 1.0
];

/* erf(x)  = x P(x^2)/Q(x^2)
   0 <= x <= 1
   Peak relative error 7.6e-23  */
immutable real [7] T = [ 0x1.0da01654d757888cp+20, 0x1.2eb7497bc8b4f4acp+17,
   0x1.79078c19530f72a8p+15, 0x1.4eaf2126c0b2c23p+11, 0x1.1f2ea81c9d272a2ep+8,
   0x1.59ca6e2d866e625p+2, 0x1.c188e0b67435faf4p-4
];

immutable real [7] U = [ 0x1.dde6025c395ae34ep+19, 0x1.c4bc8b6235df35aap+18,
   0x1.8465900e88b6903ap+16, 0x1.855877093959ffdp+13, 0x1.e5c44395625ee358p+9,
   0x1.6a0fed103f1c68a6p+5, 1.0
];

}

/**
 *  Complementary error function
 *
 * erfc(x) = 1 - erf(x), and has high relative accuracy for
 * values of x far from zero. (For values near zero, use erf(x)).
 *
 *  1 - erf(x) =  2/ $(SQRT)(&pi;)
 *     $(INTEGRAL x, $(INFINITY)) exp( - $(POWER t, 2)) dt
 *
 *
 * For small x, erfc(x) = 1 - erf(x); otherwise rational
 * approximations are computed.
 *
 * A special function expx2(x) is used to suppress error amplification
 * in computing exp(-x^2).
 */
real erfc(real a)
{
    if (a == real.infinity)
        return 0.0;
    if (a == -real.infinity)
        return 2.0;

    real x;

    if (a < 0.0L )
        x = -a;
    else
        x = a;
    if (x < 1.0)
        return 1.0 - erf(a);

    real z = -a * a;

    if (z < -MAXLOG){
//    mtherr( "erfcl", UNDERFLOW );
        if (a < 0) return 2.0;
        else return 0.0;
    }

    /* Compute z = exp(z).  */
    z = expx2(a, -1);
    real y = 1.0/x;


    if( x < 8.0 ) y = z * rationalPoly(y, P, Q);
    else          y = z * y * rationalPoly(y * y, R, S);

    if (a < 0.0L)
        y = 2.0L - y;

    if (y == 0.0) {
//    mtherr( "erfcl", UNDERFLOW );
        if (a < 0) return 2.0;
        else return 0.0;
    }

    return y;
}


private {
/* Exponentially scaled erfc function
   exp(x^2) erfc(x)
   valid for x > 1.
   Use with normalDistribution and expx2.  */

real erfce(real x)
{
    real y = 1.0/x;

    if (x < 8.0) {
        return rationalPoly( y, P, Q);
    } else {
        return y * rationalPoly(y*y, R, S);
    }
}

}

/**
 *  Error function
 *
 * The integral is
 *
 *  erf(x) =  2/ $(SQRT)(&pi;)
 *     $(INTEGRAL 0, x) exp( - $(POWER t, 2)) dt
 *
 * The magnitude of x is limited to about 106.56 for IEEE 80-bit
 * arithmetic; 1 or -1 is returned outside this range.
 *
 * For 0 <= |x| < 1, a rational polynomials are used; otherwise
 * erf(x) = 1 - erfc(x).
 *
 * ACCURACY:
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      0,1         50000       2.0e-19     5.7e-20
 */
real erf(real x)
{
    if (x == 0.0)
        return x; // deal with negative zero
    if (x == -real.infinity)
        return -1.0;
    if (x == real.infinity)
        return 1.0;
    if (abs(x) > 1.0L)
        return 1.0L - erfc(x);

    real z = x * x;
    return x * rationalPoly(z, T, U);
}

unittest {
   // High resolution test points.
    enum real erfc0_250 = 0.723663330078125 + 1.0279753638067014931732235184287934646022E-5;
    enum real erfc0_375 = 0.5958709716796875 + 1.2118885490201676174914080878232469565953E-5;
    enum real erfc0_500 = 0.4794921875 + 7.9346869534623172533461080354712635484242E-6;
    enum real erfc0_625 = 0.3767547607421875 + 4.3570693945275513594941232097252997287766E-6;
    enum real erfc0_750 = 0.2888336181640625 + 1.0748182422368401062165408589222625794046E-5;
    enum real erfc0_875 = 0.215911865234375 + 1.3073705765341685464282101150637224028267E-5;
    enum real erfc1_000 = 0.15728759765625 + 1.1609394035130658779364917390740703933002E-5;
    enum real erfc1_125 = 0.111602783203125 + 8.9850951672359304215530728365232161564636E-6;

    enum real erf0_875  = (1-0.215911865234375) - 1.3073705765341685464282101150637224028267E-5;


    assert(feqrel(erfc(0.250L), erfc0_250 )>=real.mant_dig-1);
    assert(feqrel(erfc(0.375L), erfc0_375 )>=real.mant_dig-0);
    assert(feqrel(erfc(0.500L), erfc0_500 )>=real.mant_dig-2);
    assert(feqrel(erfc(0.625L), erfc0_625 )>=real.mant_dig-1);
    assert(feqrel(erfc(0.750L), erfc0_750 )>=real.mant_dig-1);
    assert(feqrel(erfc(0.875L), erfc0_875 )>=real.mant_dig-4);
    assert(feqrel(erfc(1.000L), erfc1_000 )>=real.mant_dig-2);
    assert(feqrel(erfc(1.125L), erfc1_125 )>=real.mant_dig-2);
    assert(feqrel(erf(0.875L), erf0_875 )>=real.mant_dig-1);
    // The DMC implementation of erfc() fails this next test (just)
    assert(feqrel(erfc(4.1L),0.67000276540848983727e-8L)>=real.mant_dig-5);

    assert(isIdentical(erf(0.0),0.0));
    assert(isIdentical(erf(-0.0),-0.0));
    assert(erf(real.infinity) == 1.0);
    assert(erf(-real.infinity) == -1.0);
    assert(isIdentical(erf(NaN(0xDEF)),NaN(0xDEF)));
    assert(isIdentical(erfc(NaN(0xDEF)),NaN(0xDEF)));
    assert(isIdentical(erfc(real.infinity),0.0));
    assert(erfc(-real.infinity) == 2.0);
    assert(erfc(0) == 1.0);
}

/*
 *  Exponential of squared argument
 *
 * Computes y = exp(x*x) while suppressing error amplification
 * that would ordinarily arise from the inexactness of the
 * exponential argument x*x.
 *
 * If sign < 0, the result is inverted; i.e., y = exp(-x*x) .
 *
 * ACCURACY:
 *                      Relative error:
 * arithmetic      domain        # trials      peak         rms
 *   IEEE     -106.566, 106.566    10^5       1.6e-19     4.4e-20
 */

real expx2(real x, int sign)
{
    /*
    Cephes Math Library Release 2.9:  June, 2000
    Copyright 2000 by Stephen L. Moshier
    */
    const real M = 32768.0;
    const real MINV = 3.0517578125e-5L;

    x = abs(x);
    if (sign < 0)
        x = -x;

  /* Represent x as an exact multiple of M plus a residual.
     M is a power of 2 chosen so that exp(m * m) does not overflow
     or underflow and so that |x - m| is small.  */
    real m = MINV * floor(M * x + 0.5L);
    real f = x - m;

    /* x^2 = m^2 + 2mf + f^2 */
    real u = m * m;
    real u1 = 2 * m * f  +  f * f;

    if (sign < 0) {
        u = -u;
        u1 = -u1;
    }

    if ((u+u1) > MAXLOG)
        return real.infinity;

    /* u is exact, u1 is small.  */
    return exp(u) * exp(u1);
}


/*
Computes the normal distribution function.

The normal (or Gaussian, or bell-shaped) distribution is
defined as:

normalDist(x) = 1/$(SQRT) &pi; $(INTEGRAL -$(INFINITY), x) exp( - $(POWER t, 2)/2) dt
    = 0.5 + 0.5 * erf(x/sqrt(2))
    = 0.5 * erfc(- x/sqrt(2))

To maintain accuracy at high values of x, use
normalDistribution(x) = 1 - normalDistribution(-x).

Accuracy:
Within a few bits of machine resolution over the entire
range.

References:
$(LINK http://www.netlib.org/cephes/ldoubdoc.html),
G. Marsaglia, "Evaluating the Normal Distribution",
Journal of Statistical Software <b>11</b>, (July 2004).
*/
real normalDistributionImpl(real a)
{
    real x = a * SQRT1_2;
    real z = abs(x);

    if( z < 1.0 )
        return 0.5L + 0.5L * erf(x);
    else {
        real y = 0.5L * erfce(z);
        /* Multiply by exp(-x^2 / 2)  */
        z = expx2(a, -1);
        y = y * sqrt(z);
        if( x > 0.0L )
            y = 1.0L - y;
        return y;
    }
}

unittest {
assert(fabs(normalDistributionImpl(1L) - (0.841344746068543))< 0.0000000000000005);
assert(isIdentical(normalDistributionImpl(NaN(0x325)), NaN(0x325)));
}

/*
 * Inverse of Normal distribution function
 *
 * Returns the argument, x, for which the area under the
 * Normal probability density function (integrated from
 * minus infinity to x) is equal to p.
 *
 * For small arguments 0 < p < exp(-2), the program computes
 * z = sqrt( -2 log(p) );  then the approximation is
 * x = z - log(z)/z  - (1/z) P(1/z) / Q(1/z) .
 * For larger arguments,  x/sqrt(2 pi) = w + w^3 R(w^2)/S(w^2)) ,
 * where w = p - 0.5 .
 */
real normalDistributionInvImpl(real p)
in {
  assert(p>=0.0L && p<=1.0L, "Domain error");
}
body
{
static immutable real[8] P0 =
[ -0x1.758f4d969484bfdcp-7, 0x1.53cee17a59259dd2p-3,
   -0x1.ea01e4400a9427a2p-1,  0x1.61f7504a0105341ap+1, -0x1.09475a594d0399f6p+2,
    0x1.7c59e7a0df99e3e2p+1, -0x1.87a81da52edcdf14p-1,  0x1.1fb149fd3f83600cp-7
];

static immutable real[8] Q0 =
[ -0x1.64b92ae791e64bb2p-7, 0x1.7585c7d597298286p-3,
   -0x1.40011be4f7591ce6p+0, 0x1.1fc067d8430a425ep+2, -0x1.21008ffb1e7ccdf2p+3,
   0x1.3d1581cf9bc12fccp+3, -0x1.53723a89fd8f083cp+2, 1.0
];

static immutable real[10] P1 =
[ 0x1.20ceea49ea142f12p-13, 0x1.cbe8a7267aea80bp-7,
   0x1.79fea765aa787c48p-2, 0x1.d1f59faa1f4c4864p+1, 0x1.1c22e426a013bb96p+4,
   0x1.a8675a0c51ef3202p+5, 0x1.75782c4f83614164p+6, 0x1.7a2f3d90948f1666p+6,
   0x1.5cd116ee4c088c3ap+5, 0x1.1361e3eb6e3cc20ap+2
];

static immutable real[10] Q1 =
[ 0x1.3a4ce1406cea98fap-13, 0x1.f45332623335cda2p-7,
   0x1.98f28bbd4b98db1p-2, 0x1.ec3b24f9c698091cp+1, 0x1.1cc56ecda7cf58e4p+4,
   0x1.92c6f7376bf8c058p+5, 0x1.4154c25aa47519b4p+6, 0x1.1b321d3b927849eap+6,
   0x1.403a5f5a4ce7b202p+4, 1.0
];

static immutable real[8] P2 =
[ 0x1.8c124a850116a6d8p-21, 0x1.534abda3c2fb90bap-13,
   0x1.29a055ec93a4718cp-7, 0x1.6468e98aad6dd474p-3, 0x1.3dab2ef4c67a601cp+0,
   0x1.e1fb3a1e70c67464p+1, 0x1.b6cce8035ff57b02p+2, 0x1.9f4c9e749ff35f62p+1
];

static immutable real[8] Q2 =
[ 0x1.af03f4fc0655e006p-21, 0x1.713192048d11fb2p-13,
   0x1.4357e5bbf5fef536p-7, 0x1.7fdac8749985d43cp-3, 0x1.4a080c813a2d8e84p+0,
   0x1.c3a4b423cdb41bdap+1, 0x1.8160694e24b5557ap+2, 1.0
];

static immutable real[8] P3 =
[ -0x1.55da447ae3806168p-34, -0x1.145635641f8778a6p-24,
 -0x1.abf46d6b48040128p-17, -0x1.7da550945da790fcp-11, -0x1.aa0b2a31157775fap-8,
   0x1.b11d97522eed26bcp-3, 0x1.1106d22f9ae89238p+1, 0x1.029a358e1e630f64p+1
];

static immutable real[8] Q3 =
[ -0x1.74022dd5523e6f84p-34, -0x1.2cb60d61e29ee836p-24,
   -0x1.d19e6ec03a85e556p-17, -0x1.9ea2a7b4422f6502p-11, -0x1.c54b1e852f107162p-8,
   0x1.e05268dd3c07989ep-3, 0x1.239c6aff14afbf82p+1, 1.0
];

    if(p<=0.0L || p>=1.0L)
    {
        if (p == 0.0L)
            return -real.infinity;
        if( p == 1.0L )
            return real.infinity;
        return real.nan; // domain error
    }
    int code = 1;
    real y = p;
    if( y > (1.0L - EXP_2) ) {
        y = 1.0L - y;
        code = 0;
    }

    real x, z, y2, x0, x1;

    if ( y > EXP_2 ) {
        y = y - 0.5L;
        y2 = y * y;
        x = y + y * (y2 * rationalPoly( y2, P0, Q0));
        return x * SQRT2PI;
    }

    x = sqrt( -2.0L * log(y) );
    x0 = x - log(x)/x;
    z = 1.0L/x;
    if ( x < 8.0L ) {
        x1 = z * rationalPoly( z, P1, Q1);
    } else if( x < 32.0L ) {
        x1 = z * rationalPoly( z, P2, Q2);
    } else {
        x1 = z * rationalPoly( z, P3, Q3);
    }
    x = x0 - x1;
    if ( code != 0 ) {
        x = -x;
    }
    return x;
}


unittest {
    // TODO: Use verified test points.
    // The values below are from Excel 2003.
    assert(fabs(normalDistributionInvImpl(0.001) - (-3.09023230616779))< 0.00000000000005);
    assert(fabs(normalDistributionInvImpl(1e-50) - (-14.9333375347885))< 0.00000000000005);
    assert(feqrel(normalDistributionInvImpl(0.999), -normalDistributionInvImpl(0.001)) > real.mant_dig-6);

    // Excel 2003 gets all the following values wrong!
    assert(normalDistributionInvImpl(0.0) == -real.infinity);
    assert(normalDistributionInvImpl(1.0) == real.infinity);
    assert(normalDistributionInvImpl(0.5) == 0);
    // (Excel 2003 returns norminv(p) = -30 for all p < 1e-200).
    // The value tested here is the one the function returned in Jan 2006.
    real unknown1 = normalDistributionInvImpl(1e-250L);
    assert( fabs(unknown1 -(-33.79958617269L) ) < 0.00000005);
}