/usr/include/gromacs/fft/fft.h is in libgromacs-dev 2018.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 | /*
* This file is part of the GROMACS molecular simulation package.
*
* Copyright (c) 1991-2003 David van der Spoel, Erik Lindahl, University of Groningen.
* Copyright (c) 2013,2014,2015,2017, by the GROMACS development team, led by
* Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
* and including many others, as listed in the AUTHORS file in the
* top-level source directory and at http://www.gromacs.org.
*
* GROMACS is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.
*
* GROMACS is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with GROMACS; if not, see
* http://www.gnu.org/licenses, or write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* If you want to redistribute modifications to GROMACS, please
* consider that scientific software is very special. Version
* control is crucial - bugs must be traceable. We will be happy to
* consider code for inclusion in the official distribution, but
* derived work must not be called official GROMACS. Details are found
* in the README & COPYING files - if they are missing, get the
* official version at http://www.gromacs.org.
*
* To help us fund GROMACS development, we humbly ask that you cite
* the research papers on the package. Check out http://www.gromacs.org.
*/
/*! \file
* \brief Fast Fourier Transforms.
*
* This file provides an abstract Gromacs interface to Fourier transforms,
* including multi-dimensional and real-to-complex transforms.
*
* Internally it is implemented as wrappers to external libraries such
* as FFTW or the Intel Math Kernel Library, but we also have a built-in
* version of FFTPACK in case the faster alternatives are unavailable.
*
* We also provide our own multi-dimensional transform setups even when
* the underlying library does not support it directly.
*
* \inpublicapi
* \ingroup module_fft
*/
#ifndef GMX_FFT_FFT_H
#define GMX_FFT_FFT_H
#include <stdio.h>
#include "gromacs/math/gmxcomplex.h"
#include "gromacs/utility/real.h"
/*! \brief Datatype for FFT setup
*
* The gmx_fft_t type contains all the setup information, e.g. twiddle
* factors, necessary to perform an FFT. Internally it is mapped to
* whatever FFT library we are using, or the built-in FFTPACK if no fast
* external library is available.
*
* Since some of the libraries (e.g. MKL) store work array data in their
* handles this datatype should only be used for one thread at a time, i.e.
* they should allocate one instance each when executing in parallel.
*/
typedef struct gmx_fft *
gmx_fft_t;
/*! \brief Specifier for FFT direction.
*
* The definition of the 1D forward transform from input x[] to output y[] is
* \f[
* y_{k} = \sum_{j=0}^{N-1} x_{j} \exp{-i 2 \pi j k /N}
* \f]
*
* while the corresponding backward transform is
*
* \f[
* y_{k} = \sum_{j=0}^{N-1} x_{j} \exp{i 2 \pi j k /N}
* \f]
*
* A forward-backward transform pair will this result in data scaled by N.
*
* For complex-to-complex transforms you can only use one of
* GMX_FFT_FORWARD or GMX_FFT_BACKWARD, and for real-complex transforms you
* can only use GMX_FFT_REAL_TO_COMPLEX or GMX_FFT_COMPLEX_TO_REAL.
*/
enum gmx_fft_direction
{
GMX_FFT_FORWARD, /**< Forward complex-to-complex transform */
GMX_FFT_BACKWARD, /**< Backward complex-to-complex transform */
GMX_FFT_REAL_TO_COMPLEX, /**< Real-to-complex valued FFT */
GMX_FFT_COMPLEX_TO_REAL /**< Complex-to-real valued FFT */
};
/*! \brief Specifier for FFT flags.
*
* Some FFT libraries (FFTW, in particular) can do timings and other
* tricks to try and optimize the FFT for the current architecture. However,
* this can also lead to results that differ between consecutive runs with
* identical input.
* To avoid this, the conservative flag will attempt to disable such
* optimization, but there are no guarantees since we cannot control what
* the FFT libraries do internally.
*/
typedef int gmx_fft_flag;
/** Macro to indicate no special flags for FFT routines. */
static const int GMX_FFT_FLAG_NONE = 0;
/** Flag to disable FFT optimizations based on timings, see ::gmx_fft_flag. */
static const int GMX_FFT_FLAG_CONSERVATIVE = (1<<0);
/*! \brief Setup a 1-dimensional complex-to-complex transform
*
* \param fft Pointer to opaque Gromacs FFT datatype
* \param nx Length of transform
* \param flags FFT options
*
* \return status - 0 or a standard error message.
*
* \note Since some of the libraries (e.g. MKL) store work array data in their
* handles this datatype should only be used for one thread at a time,
* i.e. you should create one copy per thread when executing in parallel.
*/
int
gmx_fft_init_1d (gmx_fft_t * fft,
int nx,
gmx_fft_flag flags);
/*! \brief Setup multiple 1-dimensional complex-to-complex transform
*
* \param fft Pointer to opaque Gromacs FFT datatype
* \param nx Length of transform
* \param howmany Howmany 1D FFT
* \param flags FFT options
*
* \return status - 0 or a standard error message.
*
* \note Since some of the libraries (e.g. MKL) store work array data in their
* handles this datatype should only be used for one thread at a time,
* i.e. you should create one copy per thread when executing in parallel.
*/
int
gmx_fft_init_many_1d (gmx_fft_t * fft,
int nx,
int howmany,
gmx_fft_flag flags);
/*! \brief Setup a 1-dimensional real-to-complex transform
*
* \param fft Pointer to opaque Gromacs FFT datatype
* \param nx Length of transform in real space
* \param flags FFT options
*
* \return status - 0 or a standard error message.
*
* \note Since some of the libraries (e.g. MKL) store work array data in their
* handles this datatype should only be used for one thread at a time,
* i.e. you should create one copy per thread when executing in parallel.
*/
int
gmx_fft_init_1d_real (gmx_fft_t * fft,
int nx,
gmx_fft_flag flags);
/*! \brief Setup multiple 1-dimensional real-to-complex transform
*
* \param fft Pointer to opaque Gromacs FFT datatype
* \param nx Length of transform in real space
* \param howmany Homany 1D FFTs
* \param flags FFT options
*
* \return status - 0 or a standard error message.
*
* \note Since some of the libraries (e.g. MKL) store work array data in their
* handles this datatype should only be used for one thread at a time,
* i.e. you should create one copy per thread when executing in parallel.
*/
int
gmx_fft_init_many_1d_real (gmx_fft_t * fft,
int nx,
int howmany,
gmx_fft_flag flags);
/*! \brief Setup a 2-dimensional real-to-complex transform
*
* \param fft Pointer to opaque Gromacs FFT datatype
* \param nx Length of transform in first dimension
* \param ny Length of transform in second dimension
* \param flags FFT options
*
* The normal space is assumed to be real, while the values in
* frequency space are complex.
*
* \return status - 0 or a standard error message.
*
* \note Since some of the libraries (e.g. MKL) store work array data in their
* handles this datatype should only be used for one thread at a time,
* i.e. you should create one copy per thread when executing in parallel.
*/
int
gmx_fft_init_2d_real (gmx_fft_t * fft,
int nx,
int ny,
gmx_fft_flag flags);
/*! \brief Perform a 1-dimensional complex-to-complex transform
*
* Performs an instance of a transform previously initiated.
*
* \param setup Setup returned from gmx_fft_init_1d()
* \param dir Forward or Backward
* \param in_data Input grid data. This should be allocated with gmx_new()
* to make it 16-byte aligned for better performance.
* \param out_data Output grid data. This should be allocated with gmx_new()
* to make it 16-byte aligned for better performance.
* You can provide the same pointer for in_data and out_data
* to perform an in-place transform.
*
* \return 0 on success, or an error code.
*
* \note Data pointers are declared as void, to avoid casting pointers
* depending on your grid type.
*/
int
gmx_fft_1d (gmx_fft_t setup,
enum gmx_fft_direction dir,
void * in_data,
void * out_data);
/*! \brief Perform many 1-dimensional complex-to-complex transforms
*
* Performs many instances of a transform previously initiated.
*
* \param setup Setup returned from gmx_fft_init_1d()
* \param dir Forward or Backward
* \param in_data Input grid data. This should be allocated with gmx_new()
* to make it 16-byte aligned for better performance.
* \param out_data Output grid data. This should be allocated with gmx_new()
* to make it 16-byte aligned for better performance.
* You can provide the same pointer for in_data and out_data
* to perform an in-place transform.
*
* \return 0 on success, or an error code.
*
* \note Data pointers are declared as void, to avoid casting pointers
* depending on your grid type.
*/
int
gmx_fft_many_1d (gmx_fft_t setup,
enum gmx_fft_direction dir,
void * in_data,
void * out_data);
/*! \brief Perform a 1-dimensional real-to-complex transform
*
* Performs an instance of a transform previously initiated.
*
* \param setup Setup returned from gmx_fft_init_1d_real()
* \param dir Real-to-complex or complex-to-real
* \param in_data Input grid data. This should be allocated with gmx_new()
* to make it 16-byte aligned for better performance.
* \param out_data Output grid data. This should be allocated with gmx_new()
* to make it 16-byte aligned for better performance.
* You can provide the same pointer for in_data and out_data
* to perform an in-place transform.
*
* If you are doing an in-place transform, the array must be padded up to
* an even integer length so n/2 complex numbers can fit. Out-of-place arrays
* should not be padded (although it doesn't matter in 1d).
*
* \return 0 on success, or an error code.
*
* \note Data pointers are declared as void, to avoid casting pointers
* depending on transform direction.
*/
int
gmx_fft_1d_real (gmx_fft_t setup,
enum gmx_fft_direction dir,
void * in_data,
void * out_data);
/*! \brief Perform many 1-dimensional real-to-complex transforms
*
* Performs many instances of a transform previously initiated.
*
* \param setup Setup returned from gmx_fft_init_1d_real()
* \param dir Real-to-complex or complex-to-real
* \param in_data Input grid data. This should be allocated with gmx_new()
* to make it 16-byte aligned for better performance.
* \param out_data Output grid data. This should be allocated with gmx_new()
* to make it 16-byte aligned for better performance.
* You can provide the same pointer for in_data and out_data
* to perform an in-place transform.
*
* If you are doing an in-place transform, the array must be padded up to
* an even integer length so n/2 complex numbers can fit. Out-of-place arrays
* should not be padded (although it doesn't matter in 1d).
*
* \return 0 on success, or an error code.
*
* \note Data pointers are declared as void, to avoid casting pointers
* depending on transform direction.
*/
int
gmx_fft_many_1d_real (gmx_fft_t setup,
enum gmx_fft_direction dir,
void * in_data,
void * out_data);
/*! \brief Perform a 2-dimensional real-to-complex transform
*
* Performs an instance of a transform previously initiated.
*
* \param setup Setup returned from gmx_fft_init_1d_real()
* \param dir Real-to-complex or complex-to-real
* \param in_data Input grid data. This should be allocated with gmx_new()
* to make it 16-byte aligned for better performance.
* \param out_data Output grid data. This should be allocated with gmx_new()
* to make it 16-byte aligned for better performance.
* You can provide the same pointer for in_data and out_data
* to perform an in-place transform.
*
* \return 0 on success, or an error code.
*
* \note If you are doing an in-place transform, the last dimension of the
* array MUST be padded up to an even integer length so n/2 complex numbers can
* fit. Thus, if the real grid e.g. has dimension 5*3, you must allocate it as
* a 5*4 array, where the last element in the second dimension is padding.
* The complex data will be written to the same array, but since that dimension
* is 5*2 it will now fill the entire array. Reverse complex-to-real in-place
* transformation will produce the same sort of padded array.
*
* The padding does NOT apply to out-of-place transformation. In that case the
* input array will simply be 5*3 of real, while the output is 5*2 of complex.
*
* \note Data pointers are declared as void, to avoid casting pointers
* depending on transform direction.
*/
int
gmx_fft_2d_real (gmx_fft_t setup,
enum gmx_fft_direction dir,
void * in_data,
void * out_data);
/*! \brief Release an FFT setup structure
*
* Destroy setup and release all allocated memory.
*
* \param setup Setup returned from gmx_fft_init_1d(), or one
* of the other initializers.
*
*/
void
gmx_fft_destroy (gmx_fft_t setup);
/*! \brief Release a many FFT setup structure
*
* Destroy setup and release all allocated memory.
*
* \param setup Setup returned from gmx_fft_init_1d(), or one
* of the other initializers.
*
*/
void
gmx_many_fft_destroy (gmx_fft_t setup);
/*! \brief Transpose 2d complex matrix, in-place or out-of-place.
*
* This routines works when the matrix is non-square, i.e. nx!=ny too,
* without allocating an entire matrix of work memory, which is important
* for huge FFT grids.
*
* \param in_data Input data, to be transposed
* \param out_data Output, transposed data. If this is identical to
* in_data, an in-place transpose is performed.
* \param nx Number of rows before transpose
* \param ny Number of columns before transpose
*
* \return GMX_SUCCESS, or an error code from gmx_errno.h
*/
int
gmx_fft_transpose_2d (t_complex * in_data,
t_complex * out_data,
int nx,
int ny);
/*! \brief Cleanup global data of FFT
*
* Any plans are invalid after this function. Should be called
* after all plans have been destroyed.
*/
void gmx_fft_cleanup();
#endif
|