/usr/include/x86_64-linux-gnu/Gyoto/GyotoScreen.h is in libgyoto6-dev 1.2.0-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 | /**
* \file GyotoScreen.h
* \brief Description of the observer screen
*
*/
/*
Copyright 2011-2016 Thibaut Paumard, Frederic Vincent
This file is part of Gyoto.
Gyoto is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Gyoto is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Gyoto. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __GyotoScreen_H_
#define __GyotoScreen_H_
#include <iostream>
#include <fstream>
#include <string>
#if defined HAVE_BOOST_ARRAY_HPP
# include <boost/array.hpp>
# define GYOTO_ARRAY boost::array
# if defined HAVE_MPI
# include <boost/version.hpp>
# if BOOST_VERSION >= 106400
# include <boost/serialization/boost_array.hpp>
# include <boost/serialization/array_wrapper.hpp>
# endif
# endif
#else
template <typename T, size_t sz> class GYOTO_ARRAY {
private:
T buf[sz];
public:
T& operator[](size_t c) { return buf[c] ; }
};
#endif
namespace Gyoto {
class Screen;
}
#include <GyotoDefs.h>
#include <GyotoUtils.h>
#include <GyotoSmartPointer.h>
#include <GyotoObject.h>
#include <GyotoMetric.h>
#include <GyotoSpectrometer.h>
/**
* \class Gyoto::Screen
* \brief The camera with which the Astrobj is observed
*
* In the observer-centric point-of-view, the center of the Metric's
* coordinate system is positioned relatively to the observing Screen
* using three Euler angles and the distance (in meters). The three
* Euler angles are:
* - position angle of the line of nodes (North of East);
* - inclination (0 = face-on);
* - argument of the X axis of the Metric's coordinate system.
* We use the z-x-z convention.
* See http://en.wikipedia.org/wiki/Euler_angles
*
* In addition, the Screen conveys:
* - the observing date (in geometrical units, but expect it to
* change to seconds in a future version);
* - the field-of-view of the image;
* - the resolution of the camera: number of pixels on each side
* (the camera is square);
* - the observing frequency.
*
* The scalar FreqObs defines the observing frequency for Scenery
* quantity Intensity.
*
* Likewise, a Gyoto::Spectrometer defines for which frequencies
* spectra are computed (when the Quantity Spectrum is requested in
* the Scenery).
*
* For the sake of theoreticians, there is an alternate way of
* specifying the relative position of the Screen and Metric, by
* specifying the 4-coordinates of the Screen in the Metric's
* coordinate system (in that case, eerything is specified in
* geometrical units).
*
* So an XML stanza for a Screen may look like that:
* \code
* <Screen>
* <Time> 1000. </Time>
* <FieldOfView> 0.3141592653589793 </FieldOfView>
* <Resolution> 128 </Resolution>
* <Distance> 1e30 </Distance>
* <PALN> 3.14159 </PALN>
* <Inclination> 2.0944 </Inclination>
* <Argument> -2.0944 </Argument>
* <Spectrometer kind="freqlog" nsamples="10"> 17. 23. </Spectrometer>
* <FreqObs> 1e20 </FreqObs>
* </Screen>
* \endcode
*
* or like that:
*
* \code
* <Screen>
* <Position> 1000. 1000. 0.15. 0.</Position>
* <FieldOfView> 0.3141592653589793 </FieldOfView>
* <Resolution> 128 </Resolution>
* <Spectrometer kind="freqlog" nsamples="10"> 17. 23. </Spectrometer>
* <FreqObs> 1e20 </FreqObs>
* </Screen>
* \endcode
*
*
* Units can be specified using the unit attribute in the XML file,
* for instance:
*
* \code
* <Distance unit="kpc"> 8 </Distance>
* \endcode
*
* Possible units are (with [] noting the default):
* - distance: [m], geometrical, cm, km, AU, ly, pc, kpc, Mpc;
* - PALN, inclination, argument: [rad], deg.
* - frequency: [Hz], µm, GeV...
*
* When the distance is really large and most of the ray-tracing would
* happen de facto in flat space, the camera is transported to a
* location at a reasonable distance from the metric and the images
* are scaled accordingly. The default value for this distance should
* be fine, but it can be customized using the "dmax" attribute of the
* "Distance" element. "dmax" is always expressed in geometrical
* units:
*
* \code
* <Distance unit="kpc" dmax="1e7"> 8 </Distance>
* \endcode
*
* Symptoms when dmax is too large include pixelization of the image
* (neighbouring photons are numerically identical) and other
* numerical overflows. dmax is too small when it is apparent that
* changing it yields projection effects. dmax must be large compared
* to rmax in the Astrobj and ideally, changing it by an order of
* magnitude should not yield significant changes in the ray-traced
* image.
*
* A mask may be used to limit ray-tracing to only some portions of
* the field. The Scenery checks whether a mask is to be used using
* Screen::operator()(size_t i, size_t j). The mask can be loaded from
* a FITS file as a square image of doubles:
* \code
* <Mask>maskfile.fits</Mask>
* \endcode
* The mask needs to be have the same size as the Screen itself, so
* loading a mask also sets the resolution, and changing the
* resolution after setting a mask also removes the mask. The content
* of the Mask entity is parsed by Factory::fullPath(), so it can be
* an absolute path, a path relative to where the XML file is stored,
* or relative to the current working directory if prefixed with
* "`pwd`/".
*
*/
class Gyoto::Screen
: public Gyoto::SmartPointee,
public Gyoto::Object
{
friend class Gyoto::SmartPointer<Gyoto::Screen>;
private:
double tobs_; ///< Observing date in s
double fov_; ///< Field-of-view in rad
// double tmin_;
size_t npix_; ///< Resolution in pixels
/**
* \brief Mask with 0 where the ray-tracing should not be performed
*/
double * mask_;
/**
* \brief Last read or written FITS file
*
* Used when saving to XML: if the mask was saved or loaded from
* FITS file, output this file name in the XML.
*/
std::string mask_filename_;
double distance_; ///< Distance to the observer in m
double dmax_; ///< Maximum distance from which the photons are launched (geometrical units)
enum anglekind_e { equatorial_angles=0, rectilinear=1, spherical_angles=2};
typedef int anglekind_t;
anglekind_t anglekind_; ///< Screen angles kind (0: equatorial, 1: spherical)
/**
* The angles are position angle of the line of nodes (North of
* East), inclination (0 = face-on), argument of X axis. We use the
* z-x-z convention. See http://en.wikipedia.org/wiki/Euler_angles
*/
double euler_[3]; ///< Euler angles
double ex_[3]; ///< Sky coordinate of base X vector
double ey_[3]; ///< Sky coordinate of base Y vector
double ez_[3]; ///< Sky coordinate of base Z vector
double fourvel_[4]; ///< Observer's 4-velocity
double screen1_[4]; ///< Screen e1 vector
double screen2_[4]; ///< Screen e2 vector
double screen3_[4]; ///< Screen e3 vector (normal)
double alpha0_; ///< Screen orientation (0,0) is right towards the BH
double delta0_; ///< Screen orientation (0,0) is right towards the BH
SmartPointer<Metric::Generic> gg_; ///< The Metric in this end of the Universe
/**
* \brief Gyoto::Spectrometer::Generic subclass instance used for quantities Spectrum and BinSpectrum
*/
SmartPointer<Spectrometer::Generic> spectro_;
/**
* \brief Frequency at which the observer observes
*
* For the quantity Intensity
*/
double freq_obs_;
/**
* \brief What kind of observer are we considering? (At infinity, ZAMO...)
*
*/
std::string observerkind_;
public:
GYOTO_OBJECT;
GYOTO_OBJECT_THREAD_SAFETY;
// Constructors - Destructor
// -------------------------
Screen() ; ///< Default constructor
Screen(const Screen& ) ; ///< Copy constructor
Screen * clone() const; ///< Cloner
virtual ~Screen() ; ///< Destructor
// Mutators / assignment
// ---------------------
/// Set inclination etc.
void setProjection(const double paln,
const double inclination,
const double argument);
/// Set distance, inclination etc.
void setProjection(const double distance,
const double paln,
const double inclination,
const double argument);
/// Set distance from observer
/**
* \param dist Distance in meters.
*/
void distance(double dist);
/// Set ray-tracing maximum distance
/**
* \param dist Distance in geometrical units.
*/
void dMax(double dist);
/// Set distance from observer
/**
* \param dist the distance expressed in the specified unit;
* \param unit convertible to meters
*/
void distance(double dist, const std::string &unit);
/// Set inclination relative to line-of-sight
/**
* Inclination of z-axis relative to line-of-sight, or inclination
* of equatorial plane relative to plane of the sky, in radians
*/
void inclination(double);
/// Set inclination relative to line-of-sight
/**
* Inclination of z-axis relative to line-of-sight, or inclination
* of equatorial plane relative to plane of the sky, in specified unit.
*/
void inclination(double, const std::string &unit);
void PALN(double);
///< Set position angle of the line of nodes
void PALN(double, const std::string &unit);
///< Set position angle of the line of nodes
void argument(double);
///< Set angle beetwen line of nodes and X axis of object
void argument(double, const std::string &unit);
///< Set angle beetwen line of nodes and X axis of object
void spectrometer(SmartPointer<Spectrometer::Generic> spectro);
///< Set Screen::spectro_
SmartPointer<Spectrometer::Generic> spectrometer() const ;
///< Get Screen::spectro_
/**
* \brief Set freq_obs_
* \param fo double: observing frequency in Hz
*/
void freqObs(double fo);
/**
* \brief Set freq_obs_
* \param fo double: observing frequency (or wavelength) in "unit"
* \param unit string: unit in which fo is expressed, convertable to
* Herz or meters or energy.
*/
void freqObs(double fo, const std::string &unit);
/**
* \brief Get freq_obs_.
*/
double freqObs() const ;
/**
* \brief Get freq_obs_.
* \param unit string: unit in which freq_obs_ should be returned is
* expressed, convertable to Herz or meters or energy.
*/
double freqObs(const std::string &unit) const;
/// Alternative way to set projection
/**
* Beware : paln can not be set this way, setting later other
* parameters change the observer's coordinates. For observationnal
* ray-tracing purposes, prefer setProjection().
*
* \param[in] pos position of observer in Screen's coordinate
* system. Content is copied.
*/
void setObserverPos(const double pos[4]);
void observerKind(const std::string &kind);
std::string observerKind() const;
void setFourVel(const double coord[4]);
///< Sets the observer's 4-velocity
void setScreen1(const double coord[4]);
///< Sets the screen vector e1
void setScreen2(const double coord[4]);
///< Sets the screen vector e2
void setScreen3(const double coord[4]);
///< Sets the screen vector e3 (normal)
// Accessors
// ---------
/// Get coordinate kind
/**
* From Screen::gg_.
*/
int coordKind() const;
/// Get distance from observer
/**
* In meters.
*/
double distance() const;
/// Get distance from observer
/**
* In specified unit.
*/
double distance(const std::string&) const; ///< Get distance from observer
/// Get maximum ray-tracing distance
/**
* In geometrical units.
*/
double dMax() const;
/// Get inclination relative to line-of-sight
/**
* Inclination of z-axis relative to line-of-sight, or inclination
* of equatorial plane relative to plane of the sky, in radians.
*/
double inclination() const;
/// Get inclination relative to line-of-sight
/**
* Inclination of z-axis relative to line-of-sight, or inclination
* of equatorial plane relative to plane of the sky, in specified unit.
*/
double inclination(const std::string&) const;
double PALN() const; ///< Get position angle of the line of nodes
double PALN(const std::string&) const; ///< Get position angle of the line of nodes
double argument() const; ///< Get angle between line of nodes and X axis of object
double argument(const std::string&) const; ///< Get angle between line of nodes and X axis of object
SmartPointer<Metric::Generic> metric() const; ///< Get Screen::gg_
void metric(SmartPointer<Metric::Generic> gg); ///< Set Screen::gg_
/// Get observing date in seconds
double time() const;
/// Get observing date in seconds
double time(const std::string &) const;
/// Set observing date in specified unit
void time(double, const std::string &);
/// Set observing date in seconds
void time(double);
/// Get Screen::fov_ in radians
double fieldOfView() const;
/// Get Screen::fov_ in specified unit
double fieldOfView(std::string const &unit) const;
/// Set Screen::fov_ in radians
void fieldOfView(double);
/// Set Screen::fov_ in specified unit
void fieldOfView(double, const std::string &unit);
/// Set direction of the center of the field
void alpha0(double);
/// Set direction of the center of the field in specified unit
void alpha0(double, const std::string &unit);
/// Get direction of the center of the field
double alpha0() const;
/// Get direction of the center of the field in specified unit
double alpha0(std::string const &unit)const;
/// Set direction of the center of the field
void delta0(double);
/// Set direction of the center of the field in specified unit
void delta0(double, const std::string &unit);
/// Get direction of the center of the field
double delta0() const;
/// Get direction of the center of the field in specified unit
double delta0(std::string const &unit)const;
/// Set Screen::anglekind_
void anglekind(int);
void anglekind(std::string const&);
std::string anglekind() const;
/// Get Screen::npix_
size_t resolution() const;
/// Set Screen::npix_
void resolution(size_t);
/// Set mask_ from array
/**
* mm will be copied. mm must be a square resolution x resolution
* array. If mm==NULL, just deallocate mask_.
*/
void mask(double const * const mm, size_t resolution=0);
/// Retrieve const pointer to mask_
double const * mask() const ;
void maskFile(std::string const &fname);
std::string maskFile() const;
# ifdef GYOTO_USE_CFITSIO
/// Read mask_ from FITS file
void fitsReadMask(std::string const &fname);
/// Save mask_ from FITS file
void fitsWriteMask(std::string const &fname);
# endif
/// Whether this pixel should be ray-traced
/**
* If mask_ is not set, always true. Else, true for non-zero cells
* in mask_.
*/
bool operator()(size_t, size_t);
/// 4-Position of the observer relative to the metric
/**
* A Screen is positioned relative to the observer with four elements:
* Screen::distance, Screen::inclination, Screen::paln and
* Screen::argument.
*
* This function returns the position of the observer relative to
* the metric system in Screen::gg_, using these parameters. The
* output parameter is coord.
*
* \param[out] coord position of the observer. Must be preallocated.
*/
void getObserverPos(double dest[4]) const;
/// Get copy of Screen::fourvel_
/**
* \param[out] fourvel preallocated 4-element array
*/
void getFourVel(double dest[4]) const;
void fourVel(std::vector<double> const &);
std::vector<double> fourVel() const;
void screenVector1(std::vector<double> const &);
std::vector<double> screenVector1() const;
void screenVector2(std::vector<double> const &);
std::vector<double> screenVector2() const;
void screenVector3(std::vector<double> const &);
std::vector<double> screenVector3() const;
/// Get copy of Screen::screen1_
/**
* \param[out] dest preallocated 4-element array
*/
void getScreen1(double dest[4]) const;
/// Get copy of Screen::screen2_
/**
* \param[out] dest preallocated 4-element array
*/
void getScreen2(double dest[4]) const;
/// Get copy of Screen::screen3_
/**
* \param[out] dest preallocated 4-element array
*/
void getScreen3(double dest[4]) const;
/// Get 8-coordinate of Photon hitting screen from a given direction
/**
* Similar to Screen::getObserverPos() but will return in addition
* the 4-velocity of a photon corresponding to the sky direction
* given by x and y.
* \param[in] x RA (d_alpha*cos(delta)) offset in radians;
* \param[in] y Dec offset (d_delta) in radians;
* \param[out] dest position-velocity of the observer Photon. Preallocated.
*
*/
void getRayCoord(double x, double y, double dest[8]) const;
/// Get 8-coordinate of Photon hitting screen pixel
/**
* Similar to Screen::getObserverPos() but will return in addition
* the 4-velocity of a photon corresponding to the sky direction
* given by x and y.
* \param[in] i, j pixel coordinates
* \param[out] dest position-velocity of the Photon. Preallocated.
*
*/
void getRayCoord(const size_t i, const size_t j, double dest[8]) const;
void coordToSky(const double pos[4], double dest[3]) const;
///< Convert 4-position to 3-sky position
void coordToXYZ(const double pos[4], double dest[3]) const;
///< Convert 4-position to 3-cartesian coordinates
void computeBaseVectors() ;
///< Compute base vectors according to projection parameters
/// Display
// friend std::ostream& operator<<(std::ostream& , const Screen& ) ;
std::ostream& print(std::ostream&) const ; ///< Debug helper
std::ostream& printBaseVectors(std::ostream&) const ; ///< Debug helper
// UDUNITS
# ifdef HAVE_UDUNITS
/// Map "pix" and "pixel" to angular pixel width in unit system
/**
* "pix" or "pixel" can then be used in units.
*
* There is only one unit system in Gyoto: "pix" can therefore be
* registered only for one Screen at a time. See Gyoto::Units.
*
* The unit must later be unmapped with unmapPixUnit().
*/
void mapPixUnit();
/// Unmap "pix" and "pixel" from unit system
/**
* See also mapPixUnit().
*/
void unmapPixUnit();
# endif
#ifdef GYOTO_USE_XERCES
public:
void fillProperty(Gyoto::FactoryMessenger *fmp, Property const &p) const;
/// Instanciate a Screen from XML entity
static SmartPointer<Screen> Subcontractor(FactoryMessenger* fmp);
#endif
/// Enum to specify whether a coordinate set (Coord1dSet or Coord2dSet) holds pixel values or angles
enum CoordType_e {angle, pixel};
/// Set of 1-d coordinates: indices or angles
/**
* Acts like a container (array-like) of either size_t (pixel
* coordinate) or double (angle) values. This container can be
* iterated-through using the operator++(), derefenced using the
* operator*() (if containing pixel coordinates) or angle() (in
* containing angles).
*/
class Coord1dSet {
public:
/// Whether this specifier represents angles or pixels
const CoordType_e kind;
public:
/// Set kind during initialization
Coord1dSet(CoordType_e k);
/// Virtual destructor
virtual ~Coord1dSet();
/// Reset specifier to point to the first value
virtual void begin() =0;
/// True if pointing to something, false if end has been reached.
virtual bool valid() =0;
/// Number of values in this container
virtual size_t size()=0;
/// Get size_t value currently pointed to
virtual size_t operator*() const ;
/// Get double value currently pointed to
virtual double angle() const ;
/// Increment iterator (point to next value)
virtual Coord1dSet& operator++()=0;
/// Get index of value currently pointed to
/**
* Starts at 0 and is implemented each time operator++ is
* called. Depending on the implementation, this may be a real
* index or computed on demand.
*/
virtual size_t index() const=0;
};
/// Class to specify a set of points on the Screen
/**
* Container (array-like) holding several 2D points. Can be a 2D
* grid of pixel coordinates or a vector of floating-point (alpha,
* delta) pairs, for instance.
*/
class Coord2dSet {
public:
/// Whether this set holds pixels or angle specifications
const CoordType_e kind;
/// Set kind at initialisation
Coord2dSet(CoordType_e k);
/// Virtual destructor
virtual ~Coord2dSet();
/// Increment pointer
virtual Coord2dSet& operator++() =0;
/// Get pixel coordinates
virtual GYOTO_ARRAY<size_t, 2> operator* () const;
/// Get angle coordinates
virtual GYOTO_ARRAY<double, 2> angles() const ;
/// Reset pointer
virtual void begin() =0;
/// Whether the end has not been passed
virtual bool valid() =0;
/// Number of positions contained
virtual size_t size()=0;
};
/// Class containing 2D-points organized in a grid
class Grid: public Coord2dSet {
protected:
protected:
/// If non-NULL, cout j each tims it is incremented.
const char * const prefix_;
Coord1dSet &iset_;
Coord1dSet &jset_;
public:
Grid(Coord1dSet &iset, Coord1dSet &jset, const char * const p=NULL);
virtual Coord2dSet& operator++();
virtual GYOTO_ARRAY<size_t, 2> operator* () const;
virtual void begin();
virtual bool valid();
virtual size_t size();
};
/// Class containing arbitrary 2D-points
/**
* ispec_ and jspec_ must be the same size.
*/
class Bucket : public Coord2dSet {
protected:
Coord1dSet &alpha_;
Coord1dSet &delta_;
public:
Bucket(Coord1dSet &iset, Coord1dSet &jset);
virtual Coord2dSet& operator++();
virtual GYOTO_ARRAY<double, 2> angles() const;
virtual GYOTO_ARRAY<size_t, 2> operator*() const;
virtual void begin();
virtual bool valid();
virtual size_t size();
};
/// A dummy, empty 2D set.
class Empty: public Coord2dSet {
public:
Empty();
virtual Coord2dSet& operator++();
virtual void begin();
virtual bool valid();
virtual size_t size();
};
/// 1D coordinated specifier for a range
class Range : public Coord1dSet {
protected:
const size_t mi_, ma_, d_, sz_;
size_t cur_;
public:
/// Specify min, max and step of this range.
Range(size_t mi, size_t ma, size_t d);
void begin();
bool valid();
size_t size();
Coord1dSet& operator++();
size_t operator*() const ;
virtual size_t index() const ;
};
/// 1D specifier for an arbitrary pixel coordinate set.
class Indices : public Coord1dSet {
protected:
size_t const * const indices_;
size_t const sz_;
size_t i_;
public:
Indices (size_t const*const buf, size_t sz);
void begin();
bool valid();
size_t size();
Coord1dSet& operator++();
size_t operator*() const ;
virtual size_t index() const ;
};
/// 1D specifier for an arbitrary angle coordinate set.
class Angles : public Coord1dSet {
protected:
double const * const buf_;
size_t const sz_;
size_t i_;
public:
Angles (double const*const buf, size_t sz);
void begin();
bool valid();
size_t size();
Coord1dSet& operator++();
double angle() const ;
virtual size_t index() const ;
};
/// 1D specifier for an angle that is repeated.
class RepeatAngle : public Coord1dSet {
protected:
double const val_;
size_t const sz_;
size_t i_;
public:
RepeatAngle (double val, size_t sz);
void begin();
bool valid();
size_t size();
Coord1dSet& operator++();
double angle() const ;
virtual size_t index() const ;
};
};
#endif
|