/usr/include/x86_64-linux-gnu/Gyoto/GyotoStandardAstrobj.h is in libgyoto6-dev 1.2.0-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 | /**
* \file GyotoStandardAstrobj.h
* \brief Astronomical objects defined bya a potential/distance
*
* Many geometrically thick objects can be defined by the value of a
* function of the 4 coordinates, and their emission can often be
* defined in terms of an emission law and of a transmission law.
*
* This is a base class for this standard case which simplifies a lot
* writting new Astrobjs.
*/
/*
Copyright 2011 Thibaut Paumard, Frederic Vincent
This file is part of Gyoto.
Gyoto is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Gyoto is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Gyoto. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __GyotoStandardAstrobj_H_
#define __GyotoStandardAstrobj_H_
#include <iostream>
#include <fstream>
#include <iomanip>
#include <string>
#include "GyotoAstrobj.h"
#include "GyotoFunctors.h"
namespace Gyoto{
namespace Astrobj {
class Standard;
}
}
/**
* \class Gyoto::Astrobj::Standard
* \brief Astronomical objects defined bya a potential/distance
*
* Many geometrically thick objects can be defined by the value of a
* function of the 4 coordinates, and their emission can often be
* defined in terms of an emission law and of a transmission law.
*
* This is a base class for this standard case which simplifies a lot
* writting new Astrobjs.
*
* It is either to implement a sub-class of Astrobj::Standard than a
* sub-class of Astrobj::Generic. In particular, there is no need to
* implement the Generic::Impact() function. Instead, one needs to
* implement a few much simpler functions and most of the complex
* ray-tracing algorithms and heuristics is implemented in
* Standard::Impact(). It is recommended to read first the
* introduction in the Gyoto::Astrobj namespace documentation.
*
* The geometrical shape of a Gyoto::Astrobj::Standard object is
* yielded by a function of the 4 position vector. This function is
* implemented as operator()(). The velocity field of the fluid is
* implemented in the getVelocity() method. The emission(),
* integrateEmission() and transmission() methods implement the
* radiative transfer primitives for this object. Finally, you may
* choose to reimplement processHitQuantities() and Impact(), but
* this should not be necessary (that is the all point of the
* Standard class).
*
* Like any other Astrobj::Generic sub-classes, an Astrobj::Standard
* subclass should register an Astrobj::Subcontractor_t function using
* the Astrobj::Register() function. See also \ref
* writing_plugins_page .
*/
class Gyoto::Astrobj::Standard :
public Gyoto::Astrobj::Generic,
public Gyoto::Functor::Double_constDoubleArray
{
friend class Gyoto::SmartPointer<Gyoto::Astrobj::Standard>;
// Data :
// -----
protected:
double critical_value_; ///< See operator()(double const coord[4])
double safety_value_; ///< See operator()(double const coord[4])
// Constructors - Destructor
// -------------------------
public:
GYOTO_OBJECT;
/**
* kind_ = "Default", rmax_ = 0., rmax_set_ = 0.
*/
Standard(); ///< Default constructor.
/**
* kind_ = "Default", rmax_ = radmax, rmax_set_ = 1.
*/
Standard(double radmax); ///< Set rmax in constructor.
/**
* kind_ = kind, rmax_ = 0., rmax_set_ = 0.
*/
Standard(std::string kind); ///< Set kind in constructor.
/**
* Make a deep copy of an Astrobj::Standard instance
*/
Standard(const Standard& ) ; ///< Copy constructor.
virtual ~Standard() ; ///< Destructor: does nothing.
// Accessors
// ---------
public:
virtual void safetyValue(double val) ; ///< Set Standard::safety_value_
virtual double safetyValue() const ; ///< Get Standard::safety_value_
// Outputs
// -------
public:
virtual int Impact(Gyoto::Photon* ph, size_t index,
Astrobj::Properties *data=NULL) ;
/**
* \brief Function defining the object interior
*
* A potential, distance, or whatever function such that
* operator()(double const coord[4]) < Standard::critical_value_ if
* and only if coord is inside the object. This function is used by
* the default implmenetation of Impact(). If Impact() is
* overloaded, it is not necessary to overload operator()(double
* coord[4]). The default implementation throws an error.
*/
virtual double operator()(double const coord[4]) = 0;
/**
* \brief Fluid velocity field.
*
* Fill vel with the 4-vector velocity of the fluid at 4-position pos.
*
* \param[in] pos 4-position at which to compute velocity;
* \param[out] vel 4-velocity at pos.
*/
virtual void getVelocity(double const pos[4], double vel[4]) = 0 ;
/**
* \brief Maximum δ inside object
*
* Gives the requested integration step δ<SUB>t</SUB> (in
* coordinate time t) between two neighbooring points along a
* portion of geodesic inside an astrobj
*
* \param coord input coordinate at which δ<SUB>t</SUB> is given
*/
virtual double giveDelta(double coord[8]);
};
#endif
|