This file is indexed.

/usr/include/healpix_cxx/arr.h is in libhealpix-cxx-dev 3.30.0-8ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
/*
 *  This file is part of libcxxsupport.
 *
 *  libcxxsupport is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  libcxxsupport is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with libcxxsupport; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */

/*
 *  libcxxsupport is being developed at the Max-Planck-Institut fuer Astrophysik
 *  and financially supported by the Deutsches Zentrum fuer Luft- und Raumfahrt
 *  (DLR).
 */

/*! \file arr.h
 *  Various high-performance array classes used by the Planck LevelS package.
 *
 *  Copyright (C) 2002-2015 Max-Planck-Society
 *  \author Martin Reinecke
 */

#ifndef PLANCK_ARR_H
#define PLANCK_ARR_H

#include <algorithm>
#include <vector>
#include <cstdlib>
#include "alloc_utils.h"
#include "datatypes.h"
#include "math_utils.h"

/*! \defgroup arraygroup Array classes */
/*! \{ */

/*! View of a 1D array */
template <typename T> class arr_ref
  {
  protected:
    tsize s;
    T *d;

  public:
    /*! Constructs an \a arr_ref of size \a s_, starting at \a d_. */
    arr_ref(T *d_, tsize s_) : s(s_),d(d_) {}

    /*! Returns the current array size. */
    tsize size() const { return s; }

    /*! Writes \a val into every element of the array. */
    void fill (const T &val)
      { for (tsize m=0; m<s; ++m) d[m]=val; }

    /*! Returns a reference to element \a n */
    template<typename T2> T &operator[] (T2 n) {return d[n];}
    /*! Returns a constant reference to element \a n */
    template<typename T2> const T &operator[] (T2 n) const {return d[n];}

    /*! Returns a pointer to the first array element, or NULL if the array
        is zero-sized. */
    T *begin() { return d; }
    /*! Returns a pointer to the one-past-last array element, or NULL if the
        array is zero-sized. */
    T *end() { return d+s; }
    /*! Returns a constant pointer to the first array element, or NULL if the
        array is zero-sized. */
    const T *begin() const { return d; }
    /*! Returns a constant pointer to the one-past-last array element, or NULL
        if the array is zero-sized. */
    const T *end() const { return d+s; }

    /*! Copies all array elements to \a ptr. */
    template<typename T2> void copyToPtr (T *ptr) const
      { for (tsize m=0; m<s; ++m) ptr[m]=d[m]; }

    /*! Sorts the elements in the array, in ascending order. */
    void sort()
      { std::sort (d,d+s); }

    /*! Sorts the elements in the array, such that \a comp(d[i],d[j])==true
        for \a i<j. */
    template<typename Comp> void sort(Comp comp)
      { std::sort (d,d+s,comp); }

    /*! Helper function for linear interpolation (or extrapolation).
        \a idx and \a val are computed such that
        \a val=d[idx]+frac*(d[idx+1]-d[idx]). If \a val<d[0], \a frac will be
        negative, if \a val>d[s-1], frac will be larger than 1. In all other
        cases \a 0<=frac<=1.

        The array must be ordered in ascending order; no two values may be
        equal. */
    void interpol_helper (const T &val, tsize &idx, double &frac) const
      { ::interpol_helper (d, d+s, val, idx, frac); }

    /*! Helper function for linear interpolation (or extrapolation).
        \a idx and \a val are computed such that
        \a val=d[idx]+frac*(d[idx+1]-d[idx]). If \a comp(val,d[0])==true,
        \a frac will be negative, if \a comp(val,d[s-1])==false, frac will be
        larger than 1. In all other cases \a 0<=frac<=1.

        The array must be ordered such that \a comp(d[i],d[j])==true
        for \a i<j; no two values may be equal. */
    template<typename Comp> void interpol_helper (const T &val, Comp comp,
      tsize &idx, double &frac) const
      { ::interpol_helper (d, d+s, val, comp, idx, frac); }

    /*! Returns the minimum and maximum entry in \a minv and \a maxv,
        respectively. Throws an exception if the array is zero-sized. */
    void minmax (T &minv, T &maxv) const
      {
      planck_assert(s>0,"trying to find min and max of a zero-sized array");
      minv=maxv=d[0];
      for (tsize m=1; m<s; ++m)
        {
        if (d[m]<minv) minv=d[m];
        else if (d[m]>maxv) maxv=d[m];
        }
      }

    /*! Returns \a true, if \a val is found in the array, else \a false. */
    bool contains (const T &val) const
      {
      for (tsize m=0; m<s; ++m)
        if (d[m]==val) return true;
      return false;
      }

    /*! Returns the index of the first occurrence of \a val in the array.
        If it is not found, an exception is thrown. */
    tsize find (const T &val) const
      {
      for (tsize m=0; m<s; ++m)
        if (d[m]==val) return m;
      planck_fail ("entry not found in array");
      }

    /*! Returns \a true if the array has the same size as \a other and all
        elements of both arrays are equal, else \a false. */
    bool contentsEqual(const arr_ref &other) const
      {
      if (s!=other.s) return false;
      for (tsize i=0; i<s; ++i)
        if (d[i]!=other.d[i]) return false;
      return true;
      }
  };

/*! An array whose size is known at compile time. Very useful for storing
    small arrays on the stack, without need for \a new and \a delete(). */
template <typename T, tsize sz> class fix_arr
  {
  private:
    T d[sz];

  public:
    /*! Returns the size of the array. */
    tsize size() const { return sz; }

    /*! Returns a reference to element \a n */
    template<typename T2> T &operator[] (T2 n) {return d[n];}
    /*! Returns a constant reference to element \a n */
    template<typename T2> const T &operator[] (T2 n) const {return d[n];}
  };


/*! One-dimensional array type, with selectable storage management. */
template <typename T, typename stm> class arrT: public arr_ref<T>
  {
  private:
    bool own;

    void reset()
      { this->d=0; this->s=0; own=true; }

  public:
    /*! Creates a zero-sized array. */
    arrT() : arr_ref<T>(0,0), own(true) {}
    /*! Creates an array with \a sz entries. */
    explicit arrT(tsize sz) : arr_ref<T>(stm::alloc(sz),sz), own(true) {}
    /*! Creates an array with \a sz entries, and initializes them with
        \a inival. */
    arrT(tsize sz, const T &inival) : arr_ref<T>(stm::alloc(sz),sz), own(true)
      { this->fill(inival); }
    /*! Creates an array with \a sz entries, which uses the memory pointed
        to by \a ptr.
        \note \a ptr will <i>not</i> be deallocated by the destructor.
        \warning Only use this if you REALLY know what you are doing.
        In particular, this is only safely usable if
          <ul>
          <li>\a T is a POD type</li>
          <li>\a ptr survives during the lifetime of the array object</li>
          <li>\a ptr is not subject to garbage collection</li>
          </ul>
        Other restrictions may apply. You have been warned. */
    arrT (T *ptr, tsize sz): arr_ref<T>(ptr,sz), own(false) {}
    /*! Creates an array which is a copy of \a orig. The data in \a orig
        is duplicated. */
    arrT (const arrT &orig): arr_ref<T>(stm::alloc(orig.s),orig.s), own(true)
      { for (tsize m=0; m<this->s; ++m) this->d[m] = orig.d[m]; }
    /*! Frees the memory allocated by the object. */
    ~arrT() { if (own) stm::dealloc(this->d); }

    /*! Allocates space for \a sz elements. The content of the array is
        undefined on exit. \a sz can be 0. If \a sz is the
        same as the current size, no reallocation is performed. */
    void alloc (tsize sz)
      {
      if (sz==this->s) return;
      if (own) stm::dealloc(this->d);
      this->s = sz;
      this->d = stm::alloc(sz);
      own = true;
      }
    /*! Allocates space for \a sz elements. If \a sz is the
        same as the current size, no reallocation is performed.
        All elements are set to \a inival. */
    void allocAndFill (tsize sz, const T &inival)
      { alloc(sz); this->fill(inival); }
    /*! Deallocates the memory held by the array, and sets the array size
        to 0. */
    void dealloc() {if (own) stm::dealloc(this->d); reset();}
    /*! Resizes the array to hold \a sz elements. The existing content of the
        array is copied over to the new array to the extent possible.
        \a sz can be 0. If \a sz is the same as the current size, no
        reallocation is performed. */
    void resize (tsize sz)
      {
      using namespace std;
      if (sz==this->s) return;
      T *tmp = stm::alloc(sz);
      for (tsize m=0; m<min(sz,this->s); ++m)
        tmp[m]=this->d[m];
      if (own) stm::dealloc(this->d);
      this->s = sz;
      this->d = tmp;
      own = true;
      }

    /*! Changes the array to be a copy of \a orig. */
    arrT &operator= (const arrT &orig)
      {
      if (this==&orig) return *this;
      alloc (orig.s);
      for (tsize m=0; m<this->s; ++m) this->d[m] = orig.d[m];
      return *this;
      }

    /*! Changes the array to be a copy of the std::vector \a orig. */
    template<typename T2> void copyFrom (const std::vector<T2> &orig)
      {
      alloc (orig.size());
      for (tsize m=0; m<this->s; ++m) this->d[m] = orig[m];
      }
    /*! Changes the std::vector \a vec to be a copy of the object. */
    template<typename T2> void copyTo (std::vector<T2> &vec) const
      {
      vec.clear(); vec.reserve(this->s);
      for (tsize m=0; m<this->s; ++m) vec.push_back(this->d[m]);
      }

    /*! Reserves space for \a sz elements, then copies \a sz elements
        from \a ptr into the array. */
    template<typename T2> void copyFromPtr (const T2 *ptr, tsize sz)
      {
      alloc(sz);
      for (tsize m=0; m<this->s; ++m) this->d[m]=ptr[m];
      }

    /*! Assigns the contents and size of \a other to the array.
        \note On exit, \a other is zero-sized! */
    void transfer (arrT &other)
      {
      if (own) stm::dealloc(this->d);
      this->d=other.d;
      this->s=other.s;
      own=other.own;
      other.reset();
      }
    /*! Swaps contents and size with \a other. */
    void swap (arrT &other)
      {
      std::swap(this->d,other.d);
      std::swap(this->s,other.s);
      std::swap(own,other.own);
      }
  };

/*! One-dimensional array type. */
template <typename T>
  class arr: public arrT<T,normalAlloc__<T> >
  {
  public:
    /*! Creates a zero-sized array. */
    arr() : arrT<T,normalAlloc__<T> >() {}
    /*! Creates an array with \a sz entries. */
    explicit arr(tsize sz) : arrT<T,normalAlloc__<T> >(sz) {}
    /*! Creates an array with \a sz entries, and initializes them with
        \a inival. */
    arr(tsize sz, const T &inival) : arrT<T,normalAlloc__<T> >(sz,inival) {}
    /*! Creates an array with \a sz entries, which uses the memory pointed
        to by \a ptr.
        \note \a ptr will <i>not</i> be deallocated by the destructor.
        \warning Only use this if you REALLY know what you are doing.
        In particular, this is only safely usable if
          <ul>
          <li>\a T is a POD type</li>
          <li>\a ptr survives during the lifetime of the array object</li>
          <li>\a ptr is not subject to garbage collection</li>
          </ul>
        Other restrictions may apply. You have been warned. */
    arr (T *ptr, tsize sz): arrT<T,normalAlloc__<T> >(ptr,sz) {}
    /*! Creates an array which is a copy of \a orig. The data in \a orig
        is duplicated. */
    arr (const arr &orig): arrT<T,normalAlloc__<T> >(orig) {}
  };

/*! One-dimensional array type, with selectable storage alignment. */
template <typename T, int align>
  class arr_align: public arrT<T,alignAlloc__<T,align> >
  {
  public:
    /*! Creates a zero-sized array. */
    arr_align() : arrT<T,alignAlloc__<T,align> >() {}
    /*! Creates an array with \a sz entries. */
    explicit arr_align(tsize sz) : arrT<T,alignAlloc__<T,align> >(sz) {}
    /*! Creates an array with \a sz entries, and initializes them with
        \a inival. */
    arr_align(tsize sz, const T &inival)
      : arrT<T,alignAlloc__<T,align> >(sz,inival) {}
  };


/*! Two-dimensional array type, with selectable storage management.
    The storage ordering is the same as in C.
    An entry is located by address arithmetic, not by double dereferencing.
    The indices start at zero. */
template <typename T, typename storageManager> class arr2T
  {
  private:
    tsize s1, s2;
    arrT<T, storageManager> d;

  public:
    /*! Creates a zero-sized array. */
    arr2T() : s1(0), s2(0) {}
    /*! Creates an array with the dimensions \a sz1 and \a sz2. */
    arr2T(tsize sz1, tsize sz2)
      : s1(sz1), s2(sz2), d(s1*s2) {}
    /*! Creates an array with the dimensions  \a sz1 and \a sz2
        and initializes them with \a inival. */
    /*! Creates an array with the dimensions \a sz1 and \a sz2 from existing
        pointer. */
    arr2T(T* p, tsize sz1, tsize sz2)
      : s1(sz1), s2(sz2), d(p, s1*s2) {}
    arr2T(tsize sz1, tsize sz2, const T &inival)
      : s1(sz1), s2(sz2), d (s1*s2)
      { fill(inival); }
    /*! Creates the array as a copy of \a orig. */
    arr2T(const arr2T &orig)
      : s1(orig.s1), s2(orig.s2), d(orig.d) {}
    /*! Frees the memory associated with the array. */
    ~arr2T() {}

    /*! Returns the first array dimension. */
    tsize size1() const { return s1; }
    /*! Returns the second array dimension. */
    tsize size2() const { return s2; }
    /*! Returns the total array size, i.e. the product of both dimensions. */
    tsize size () const { return s1*s2; }

    /*! Allocates space for an array with \a sz1*sz2 elements.
        The content of the array is undefined on exit.
        \a sz1 or \a sz2 can be 0. If \a sz1*sz2 is the same as the
        currently allocated space, no reallocation is performed. */
    void alloc (tsize sz1, tsize sz2)
      {
      if (sz1*sz2 != d.size())
        d.alloc(sz1*sz2);
      s1=sz1; s2=sz2;
      }
    /*! Allocates space for an array with \a sz1*sz2 elements.
        All elements are set to \a inival.
        \a sz1 or \a sz2 can be 0. If \a sz1*sz2 is the same as the
        currently allocated space, no reallocation is performed. */
    void allocAndFill (tsize sz1, tsize sz2, const T &inival)
      { alloc(sz1,sz2); fill(inival); }
    /*! Allocates space for an array with \a sz1*sz2 elements.
        The content of the array is undefined on exit.
        \a sz1 or \a sz2 can be 0. If \a sz1*sz2 is smaller than the
        currently allocated space, no reallocation is performed. */
    void fast_alloc (tsize sz1, tsize sz2)
      {
      if (sz1*sz2<=d.size())
        { s1=sz1; s2=sz2; }
      else
        alloc(sz1,sz2);
      }
    /*! Deallocates the space and makes the array zero-sized. */
    void dealloc () {d.dealloc(); s1=0; s2=0;}

    /*! Sets all array elements to \a val. */
    void fill (const T &val)
      { for (tsize m=0; m<s1*s2; ++m) d[m]=val; }

    /*! Multiplies all array elements by \a val. */
    void scale (const T &val)
      { for (tsize m=0; m<s1*s2; ++m) d[m]*=val; }

    /*! Changes the array to be a copy of \a orig. */
    arr2T &operator= (const arr2T &orig)
      {
      if (this==&orig) return *this;
      alloc (orig.s1, orig.s2);
      d = orig.d;
      return *this;
      }

    /*! Returns a pointer to the beginning of slice \a n. */
    template<typename T2> T *operator[] (T2 n) {return &d[n*s2];}
    /*! Returns a constant pointer to the beginning of slice \a n. */
    template<typename T2> const T *operator[] (T2 n) const {return &d[n*s2];}

    /*! Returns a reference to the element with the indices \a n1 and \a n2. */
    template<typename T2, typename T3> T &operator() (T2 n1, T3 n2)
      {return d[n1*s2 + n2];}
    /*! Returns a constant reference to the element with the indices
        \a n1 and \a n2. */
    template<typename T2, typename T3> const T &operator() (T2 n1, T3 n2) const
      {return d[n1*s2 + n2];}

    /*! Returns the minimum and maximum entry in \a minv and \a maxv,
        respectively. Throws an exception if the array is zero-sized. */
    void minmax (T &minv, T &maxv) const
      {
      planck_assert(s1*s2>0,
        "trying to find min and max of a zero-sized array");
      minv=maxv=d[0];
      for (tsize m=1; m<s1*s2; ++m)
        {
        if (d[m]<minv) minv=d[m];
        if (d[m]>maxv) maxv=d[m];
        }
      }

    /*! Swaps contents and sizes with \a other. */
    void swap (arr2T &other)
      {
      d.swap(other.d);
      std::swap(s1,other.s1);
      std::swap(s2,other.s2);
      }

    /*! Returns \c true if the array and \a other have the same dimensions,
        else \c false. */
    template<typename T2, typename T3> bool conformable
      (const arr2T<T2,T3> &other) const
      { return (other.size1()==s1) && (other.size2()==s2); }
  };

/*! Two-dimensional array type. The storage ordering is the same as in C.
    An entry is located by address arithmetic, not by double dereferencing.
    The indices start at zero. */
template <typename T>
  class arr2: public arr2T<T,normalAlloc__<T> >
  {
  public:
    /*! Creates a zero-sized array. */
    arr2() : arr2T<T,normalAlloc__<T> > () {}
    /*! Creates an array with the dimensions \a sz1 and \a sz2. */
    arr2(tsize sz1, tsize sz2) : arr2T<T,normalAlloc__<T> > (sz1,sz2) {}
    /*! Creates an array with the dimensions \a sz1 and \a sz2 from existing
        pointer. */
    arr2(T* p, tsize sz1, tsize sz2) : arr2T<T,normalAlloc__<T> > (p,sz1,sz2) {}
    /*! Creates an array with the dimensions  \a sz1 and \a sz2
        and initializes them with \a inival. */
    arr2(tsize sz1, tsize sz2, const T &inival)
      : arr2T<T,normalAlloc__<T> > (sz1,sz2,inival) {}
  };

/*! Two-dimensional array type, with selectable storage alignment.
    The storage ordering is the same as in C.
    An entry is located by address arithmetic, not by double dereferencing.
    The indices start at zero. */
template <typename T, int align>
  class arr2_align: public arr2T<T,alignAlloc__<T,align> >
  {
  public:
    /*! Creates a zero-sized array. */
    arr2_align() : arr2T<T,alignAlloc__<T,align> > () {}
    /*! Creates an array with the dimensions \a sz1 and \a sz2. */
    arr2_align(tsize sz1, tsize sz2)
      : arr2T<T,alignAlloc__<T,align> > (sz1,sz2) {}
    /*! Creates an array with the dimensions  \a sz1 and \a sz2
        and initializes them with \a inival. */
    arr2_align(tsize sz1, tsize sz2, const T &inival)
      : arr2T<T,alignAlloc__<T,align> > (sz1,sz2,inival) {}
  };

/*! Two-dimensional array type. An entry is located by double dereferencing,
    i.e. via an array of pointers. The indices start at zero. */
template <typename T> class arr2b
  {
  private:
    tsize s1, s2;
    arr<T> d;
    arr<T *> d1;

    void fill_d1()
      { for (tsize m=0; m<s1; ++m) d1[m] = &d[m*s2]; }

  public:
    /*! Creates a zero-sized array. */
    arr2b() : s1(0), s2(0), d(0), d1(0) {}
    /*! Creates an array with the dimensions \a sz1 and \a sz2. */
    arr2b(tsize sz1, tsize sz2)
      : s1(sz1), s2(sz2), d(s1*s2), d1(s1)
      { fill_d1(); }
    /*! Creates the array as a copy of \a orig. */
    arr2b(const arr2b &orig)
      : s1(orig.s1), s2(orig.s2), d(orig.d), d1(s1)
      { fill_d1(); }
    /*! Frees the memory associated with the array. */
    ~arr2b() {}

    /*! Returns the first array dimension. */
    tsize size1() const { return s1; }
    /*! Returns the second array dimension. */
    tsize size2() const { return s2; }
    /*! Returns the total array size, i.e. the product of both dimensions. */
    tsize size () const { return s1*s2; }

    /*! Allocates space for an array with \a sz1*sz2 elements.
        The content of the array is undefined on exit. */
    void alloc (tsize sz1, tsize sz2)
      {
      if ((s1==sz1) && (s2==sz2)) return;
      s1=sz1; s2=sz2;
      d.alloc(s1*s2);
      d1.alloc(s1);
      fill_d1();
      }
    /*! Deallocates the space and makes the array zero-sized. */
    void dealloc () {d.dealloc(); d1.dealloc(); s1=0; s2=0;}

    /*! Sets all array elements to \a val. */
    void fill (const T &val)
      { d.fill(val); }

    /*! Changes the array to be a copy of \a orig. */
    arr2b &operator= (const arr2b &orig)
      {
      if (this==&orig) return *this;
      alloc (orig.s1, orig.s2);
      for (tsize m=0; m<s1*s2; ++m) d[m] = orig.d[m];
      return *this;
      }

    /*! Returns a pointer to the beginning of slice \a n. */
    template<typename T2> T *operator[] (T2 n) {return d1[n];}
    /*! Returns a constant pointer to the beginning of slice \a n. */
    template<typename T2> const T *operator[] (T2 n) const {return d1[n];}

    /*! Returns a pointer to the beginning of the pointer array. */
    T **p0() {return &d1[0];}
  };


/*! Three-dimensional array type. The storage ordering is the same as in C.
    An entry is located by address arithmetic, not by multiple dereferencing.
    The indices start at zero. */
template <typename T> class arr3
  {
  private:
    tsize s1, s2, s3, s2s3;
    arr<T> d;

  public:
    /*! Creates a zero-sized array. */
    arr3() : s1(0), s2(0), s3(0), s2s3(0), d(0) {}
    /*! Creates an array with the dimensions \a sz1, \a sz2 and \a sz3. */
    arr3(tsize sz1, tsize sz2, tsize sz3)
      : s1(sz1), s2(sz2), s3(sz3), s2s3(s2*s3), d(s1*s2*s3) {}
    /*! Creates the array as a copy of \a orig. */
    arr3(const arr3 &orig)
      : s1(orig.s1), s2(orig.s2), s3(orig.s3), s2s3(orig.s2s3), d(orig.d) {}
    /*! Frees the memory associated with the array. */
    ~arr3() {}

    /*! Returns the first array dimension. */
    tsize size1() const { return s1; }
    /*! Returns the second array dimension. */
    tsize size2() const { return s2; }
    /*! Returns the third array dimension. */
    tsize size3() const { return s3; }
    /*! Returns the total array size, i.e. the product of all dimensions. */
    tsize size () const { return s1*s2*s3; }

    /*! Allocates space for an array with \a sz1*sz2*sz3 elements.
        The content of the array is undefined on exit. */
    void alloc (tsize sz1, tsize sz2, tsize sz3)
      {
      d.alloc(sz1*sz2*sz3);
      s1=sz1; s2=sz2; s3=sz3; s2s3=s2*s3;
      }
    /*! Deallocates the space and makes the array zero-sized. */
    void dealloc () {d.dealloc(); s1=0; s2=0; s3=0; s2s3=0;}

    /*! Sets all array elements to \a val. */
    void fill (const T &val)
      { d.fill(val); }

    /*! Changes the array to be a copy of \a orig. */
    arr3 &operator= (const arr3 &orig)
      {
      if (this==&orig) return *this;
      alloc (orig.s1, orig.s2, orig.s3);
      d = orig.d;
      return *this;
      }

    /*! Returns a reference to the element with the indices
        \a n1, \a n2 and \a n3. */
    template<typename T2, typename T3, typename T4> T &operator()
      (T2 n1, T3 n2, T4 n3)
      {return d[n1*s2s3 + n2*s3 + n3];}
    /*! Returns a constant reference to the element with the indices
        \a n1, \a n2 and \a n3. */
    template<typename T2, typename T3, typename T4> const T &operator()
      (T2 n1, T3 n2, T4 n3) const
      {return d[n1*s2s3 + n2*s3 + n3];}

    /*! Swaps contents and sizes with \a other. */
    void swap (arr3 &other)
      {
      d.swap(other.d);
      std::swap(s1,other.s1);
      std::swap(s2,other.s2);
      std::swap(s3,other.s3);
      std::swap(s2s3,other.s2s3);
      }

    /*! Returns \c true if the array and \a other have the same dimensions,
        else \c false. */
    template<typename T2> bool conformable (const arr3<T2> &other) const
      { return (other.size1()==s1)&&(other.size2()==s2)&&(other.size3()==s3); }
  };

/*! \} */

#endif