/usr/include/healpix_cxx/math_utils.h is in libhealpix-cxx-dev 3.30.0-8ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 | /*
* This file is part of libcxxsupport.
*
* libcxxsupport is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* libcxxsupport is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with libcxxsupport; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* libcxxsupport is being developed at the Max-Planck-Institut fuer Astrophysik
* and financially supported by the Deutsches Zentrum fuer Luft- und Raumfahrt
* (DLR).
*/
/*! \file math_utils.h
* Various convenience mathematical functions.
*
* Copyright (C) 2002-2015 Max-Planck-Society
* \author Martin Reinecke
*/
#ifndef PLANCK_MATH_UTILS_H
#define PLANCK_MATH_UTILS_H
#include <cmath>
#include <algorithm>
#include "datatypes.h"
/*! \defgroup mathutilsgroup Mathematical helper functions */
/*! \{ */
/*! Returns \e true if | \a a-b | <= \a epsilon * | \a b |, else \e false. */
template<typename F> inline bool approx (F a, F b, F epsilon=1e-5)
{
using namespace std;
return abs(a-b) <= (epsilon*abs(b));
}
/*! Returns \e true if | \a a-b | <= \a epsilon, else \e false. */
template<typename F> inline bool abs_approx (F a, F b, F epsilon=1e-5)
{
using namespace std;
return abs(a-b) <= epsilon;
}
/*! Returns the largest integer which is smaller than (or equal to) \a arg. */
template<typename I, typename F> inline I ifloor (F arg)
{
using namespace std;
return I(floor(arg));
}
/*! Returns the integer which is nearest to \a arg. */
template<typename I, typename F> inline I nearest (F arg)
{ return ifloor<I>(arg+0.5); }
/*! Returns the remainder of the division \a v1/v2.
The result is non-negative.
\a v1 can be positive or negative; \a v2 must be positive. */
inline double fmodulo (double v1, double v2)
{
using namespace std;
if (v1>=0)
return (v1<v2) ? v1 : fmod(v1,v2);
double tmp=fmod(v1,v2)+v2;
return (tmp==v2) ? 0. : tmp;
// return (v1>=0) ? ((v1<v2) ? v1 : fmod(v1,v2)) : (fmod(v1,v2)+v2);
}
/*! Returns the remainder of the division \a v1/v2.
The result is non-negative.
\a v1 can be positive or negative; \a v2 must be positive. */
template<typename I> inline I imodulo (I v1, I v2)
{ I v=v1%v2; return (v>=0) ? v : v+v2; }
/*! Returns -1 if \a signvalue is negative, else +1. */
template<typename T> inline T sign (const T& signvalue)
{ return (signvalue>=0) ? 1 : -1; }
/*! Returns \a val*pow(-1,m) */
template<typename T, typename I> inline T xpow (I m, T val)
{ return (m&1) ? -val : val; }
template<typename I, bool g4> struct isqrt_helper__
{};
template<typename I> struct isqrt_helper__ <I, false>
{
static uint32 isqrt (I arg)
{
using namespace std;
return uint32 (sqrt(arg+0.5));
}
};
template<typename I> struct isqrt_helper__ <I, true>
{
static uint32 isqrt (I arg)
{
using namespace std;
I res = sqrt(double(arg)+0.5);
if (arg<(int64(1)<<50)) return uint32(res);
if (res*res>arg)
--res;
else if ((res+1)*(res+1)<=arg)
++res;
return uint32(res);
}
};
/*! Returns the integer \a n, which fulfills \a n*n<=arg<(n+1)*(n+1). */
template<typename I> inline uint32 isqrt (I arg)
{ return isqrt_helper__<I,(sizeof(I)>4)>::isqrt(arg); }
/*! Returns the largest integer \a n that fulfills \a 2^n<=arg. */
template<typename I> inline int ilog2 (I arg)
{
#ifdef __GNUC__
if (arg==0) return 0;
if (sizeof(I)==sizeof(int))
return 8*sizeof(int)-1-__builtin_clz(arg);
if (sizeof(I)==sizeof(long))
return 8*sizeof(long)-1-__builtin_clzl(arg);
if (sizeof(I)==sizeof(long long))
return 8*sizeof(long long)-1-__builtin_clzll(arg);
#endif
int res=0;
while (arg > 0xFFFF) { res+=16; arg>>=16; }
if (arg > 0x00FF) { res|=8; arg>>=8; }
if (arg > 0x000F) { res|=4; arg>>=4; }
if (arg > 0x0003) { res|=2; arg>>=2; }
if (arg > 0x0001) { res|=1; }
return res;
}
template<typename I> inline int ilog2_nonnull (I arg)
{
#ifdef __GNUC__
if (sizeof(I)<=sizeof(int))
return 8*sizeof(int)-1-__builtin_clz(arg);
if (sizeof(I)==sizeof(long))
return 8*sizeof(long)-1-__builtin_clzl(arg);
if (sizeof(I)==sizeof(long long))
return 8*sizeof(long long)-1-__builtin_clzll(arg);
#endif
return ilog2 (arg);
}
template<typename I> inline int trailingZeros(I arg)
{
if (arg==0) return sizeof(I)<<3;
#ifdef __GNUC__
if (sizeof(I)<=sizeof(int))
return __builtin_ctz(arg);
if (sizeof(I)==sizeof(long))
return __builtin_ctzl(arg);
if (sizeof(I)==sizeof(long long))
return __builtin_ctzll(arg);
#endif
int res=0;
while ((arg&0xFFFF)==0) { res+=16; arg>>=16; }
if ((arg&0x00FF)==0) { res|=8; arg>>=8; }
if ((arg&0x000F)==0) { res|=4; arg>>=4; }
if ((arg&0x0003)==0) { res|=2; arg>>=2; }
if ((arg&0x0001)==0) { res|=1; }
return res;
}
/*! Returns \a atan2(y,x) if \a x!=0 or \a y!=0; else returns 0. */
inline double safe_atan2 (double y, double x)
{
using namespace std;
return ((x==0.) && (y==0.)) ? 0.0 : atan2(y,x);
}
/*! Helper function for linear interpolation (or extrapolation).
The array must be ordered in ascending order; no two values may be equal. */
template<typename T, typename Iter, typename Comp> inline void interpol_helper
(const Iter &begin, const Iter &end, const T &val, Comp comp, tsize &idx,
T &frac)
{
using namespace std;
planck_assert((end-begin)>1,"sequence too small for interpolation");
idx = lower_bound(begin,end,val,comp)-begin;
if (idx>0) --idx;
idx = min(tsize(end-begin-2),idx);
frac = (val-begin[idx])/(begin[idx+1]-begin[idx]);
}
/*! Helper function for linear interpolation (or extrapolation).
The array must be ordered in ascending order; no two values may be equal. */
template<typename T, typename Iter> inline void interpol_helper
(const Iter &begin, const Iter &end, const T &val, tsize &idx, T &frac)
{ interpol_helper (begin,end,val,std::less<T>(),idx,frac); }
/*! \} */
#if (__cplusplus>=201103L)
template<typename T>
inline bool multiequal (const T &a, const T &b)
{ return (a==b); }
template<typename T, typename... Args>
inline bool multiequal (const T &a, const T &b, Args... args)
{ return (a==b) && multiequal (a, args...); }
#else
template<typename T> inline bool multiequal (const T &a, const T &b)
{ return (a==b); }
template<typename T> inline bool multiequal (const T &a, const T &b, const T &c)
{ return (a==b) && (a==c); }
template<typename T> inline bool multiequal (const T &a, const T &b, const T &c,
const T &d)
{ return (a==b) && (a==c) && (a==d); }
template<typename T> inline bool multiequal (const T &a, const T &b, const T &c,
const T &d, const T &e)
{ return (a==b) && (a==c) && (a==d) && (a==e); }
template<typename T> inline bool multiequal (const T &a, const T &b, const T &c,
const T &d, const T &e, const T &f)
{ return (a==b) && (a==c) && (a==d) && (a==e) && (a==f); }
#endif
template<typename T> class kahan_adder
{
private:
T sum, c;
public:
kahan_adder(): sum(0), c(0) {}
void add (const T &val)
{
volatile T tc=c; // volatile to disable over-eager optimizers
volatile T y=val-tc;
volatile T t=sum+y;
tc=(t-sum)-y;
sum=t;
c=tc;
}
T result() const { return sum; }
};
template<typename Iter> bool checkNan (Iter begin, Iter end)
{
while (begin!=end)
{
if (*begin != *begin) return true;
++begin;
}
return false;
}
#endif
|