This file is indexed.

/usr/include/healpix_cxx/vec3.h is in libhealpix-cxx-dev 3.30.0-8ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
/*
 *  This file is part of libcxxsupport.
 *
 *  libcxxsupport is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  libcxxsupport is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with libcxxsupport; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */

/*
 *  libcxxsupport is being developed at the Max-Planck-Institut fuer Astrophysik
 *  and financially supported by the Deutsches Zentrum fuer Luft- und Raumfahrt
 *  (DLR).
 */

/*! \file vec3.h
 *  Class representing 3D cartesian vectors
 *
 *  Copyright (C) 2003, 2006 Max-Planck-Society
 *  \author Martin Reinecke
 */

#ifndef PLANCK_VEC3_H
#define PLANCK_VEC3_H

#include <cmath>
#include <iostream>
#include "datatypes.h"

/*! \defgroup vec3group 3D vectors */
/*! \{ */

/*! Class representing a 3D cartesian vector. */
template<typename T>class vec3_t
  {
  public:
    T x, /*!< x-coordinate */
      y, /*!< y-coordinate */
      z; /*!< z-coordinate */

    /*! Default constructor. Does not initialize \a x, \a y, and \a z. */
    vec3_t () {}
    /*! Creates a vector with the coordinates \a xc, \a yc, and \a zc. */
    vec3_t (T xc, T yc, T zc)
      : x(xc), y(yc), z(zc) {}
    template<typename T2> explicit vec3_t (const vec3_t<T2> &orig)
      : x(orig.x), y(orig.y), z(orig.z) {}

    /*! Sets the vector components to \a xc, \a yc, and \a zc. */
    void Set (T xc, T yc, T zc)
      { x=xc; y=yc; z=zc; }
    /*! Creates a unit vector from a z coordinate and an azimuthal angle. */
    void set_z_phi (T z_, T phi)
      {
      using namespace std;
      T sintheta = sqrt((T(1)-z_)*(T(1)+z_));
      x = sintheta*cos(phi);
      y = sintheta*sin(phi);
      z = z_;
      }

    /*! Normalizes the vector to length 1. */
    void Normalize ()
      {
      using namespace std;
      T l = T(1)/sqrt (x*x + y*y + z*z);
      x*=l; y*=l; z*=l;
      }

    vec3_t Norm() const
      {
      vec3_t res(*this);
      res.Normalize();
      return res;
      }

    /*! Returns the length of the vector. */
    T Length () const
      { return sqrt (x*x + y*y + z*z); }

    /*! Returns the squared length of the vector. */
    T SquaredLength () const
      { return (x*x + y*y + z*z); }
    /*! Returns the vector with the signs of all coordinates flipped. */
    const vec3_t operator- () const
      { return vec3_t (-x, -y, -z); }
    /*! Flips the signs of all coordinates. */
    void Flip ()
      { x=-x; y=-y; z=-z; }
    /*! Returns (\a *this + \a vec). */
    const vec3_t operator+ (const vec3_t &vec) const
      { return vec3_t (x+vec.x, y+vec.y, z+vec.z); }
    /*! Adds \a vec to \a *this. */
    vec3_t &operator+= (const vec3_t &vec)
      { x+=vec.x; y+=vec.y; z+=vec.z; return *this; }
    /*! Returns (\a *this - \a vec). */
    const vec3_t operator- (const vec3_t &vec) const
      { return vec3_t (x-vec.x, y-vec.y, z-vec.z); }
    /*! Subtracts \a vec from \a *this. */
    vec3_t &operator-= (const vec3_t &vec)
      { x-=vec.x; y-=vec.y; z-=vec.z; return *this; }
    /*! Returns the vector scaled by \a fact. */
    const vec3_t operator* (T fact) const
      { return vec3_t (x*fact, y*fact, z*fact); }
    /*! Returns the vector scaled by \a 1/fact. */
    const vec3_t operator/ (T fact) const
      { T xfact = T(1)/fact; return vec3_t (x*xfact, y*xfact, z*xfact); }
    /*! Scales the vector by \a fact. */
    vec3_t &operator*= (T fact)
      { x*=fact; y*=fact; z*=fact; return *this; }
  };

/*! Returns the dot product of \a v1 and \a v2.
    \relates vec3_t */
template<typename T> inline T dotprod(const vec3_t<T> &v1, const vec3_t<T> &v2)
  { return v1.x*v2.x + v1.y*v2.y + v1.z*v2.z; }

/*! Returns the cross product of \a a and \a b.
    \relates vec3_t */
template<typename T> inline vec3_t<T> crossprod
  (const vec3_t<T> &a, const vec3_t<T> &b)
  { return vec3_t<T>(a.y*b.z - a.z*b.y, a.z*b.x - a.x*b.z, a.x*b.y - a.y*b.x); }

/*! Writes \a v to \a os.
    \relates vec3_t */
template<typename T> inline std::ostream &operator<<
  (std::ostream &os, const vec3_t<T> &v)
  {
  os << v.x << ", " << v.y << ", " << v.z << std::endl;
  return os;
  }

/*! Specialisation of vec3_t for 64-bit floating point components */
typedef vec3_t<float64> vec3;
/*! Specialisation of vec3_t for 32-bit floating point components */
typedef vec3_t<float32> vec3f;

/*! \} */

#endif