This file is indexed.

/usr/include/jellyfish/circular_buffer.hpp is in libjellyfish-2.0-dev 2.2.8-3build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
/*  This file is part of Jellyfish.

    Jellyfish is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    Jellyfish is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with Jellyfish.  If not, see <http://www.gnu.org/licenses/>.
*/


#ifndef __JELLYFISH_CIRCULAR_BUFFER_HPP__
#define __JELLYFISH_CIRCULAR_BUFFER_HPP__

#include <limits>

#include <jellyfish/compare_and_swap.hpp>
#include <jellyfish/atomic_field.hpp>
#include <jellyfish/divisor.hpp>

namespace jflib {
  template<typename T, unsigned int n, T g = ((T)1 << n) - 1>
  class basic_circular_buffer {
    static const unsigned int m = std::numeric_limits<T>::digits - n;
    struct splitT {
      T id:m;
      T val:n;
    };
    union elt {
      T      binary;
      splitT split;
    };
    //    size_t  _size;
    divisor64  _size;
    T         *_buffer;
    size_t     _head;
    size_t     _tail;
    bool       _closed;

  public:
    typedef T value_type;
    static const T guard = g;

    basic_circular_buffer(size_t size) :
    _size(size+1), _buffer(new T[_size.d()]),  _head(0), _tail(0), _closed(false)
    {
      elt init;
      init.split.id  = 0;
      init.split.val = guard;
      for(size_t i = 0; i < _size.d(); ++i)
        _buffer[i] = init.binary;
    }
    virtual ~basic_circular_buffer() {
      if(_buffer)
        delete [] _buffer;
    }

    /** Enqueue an element.
     * @return false if the FIFO is full.
     */
    bool enqueue(const T &v);
    /** Enqueue an element, optimization. No check is made that the
     * FIFO is full. Undetermined behavior if an element is inserted
     * in a full FIFO.
     */
    void enqueue_no_check(const T &v);
    /** Dequeue an element.
     * @return 0 if the FIFO is empty.
     */
    T dequeue();
    bool is_closed() const { return a_load(_closed); }
    void close() { a_store(_closed, true); }

    /// Return capacity of circular buffer
    size_t size() { return _size.d(); }
    /// Return the number of element currently in circular buffer
    size_t fill() {
      size_t head, tail;
      size_t nhead = a_load(_head);
      do {
        head = nhead;
        tail = a_load(_tail);
      } while(head != (nhead = a_load(_head)));

      return head >= tail ? head - tail : head + _size.d() - tail;
    }
  };

  template<typename T, T g = (T)-1>
  class circular_buffer : public basic_circular_buffer<uint64_t, std::numeric_limits<T>::digits, g> {
  public:
    circular_buffer(size_t size) :
      basic_circular_buffer<uint64_t, std::numeric_limits<T>::digits, g>(size) { }
    virtual ~circular_buffer() { }

    bool enqueue(const T &v) {
      return basic_circular_buffer<uint64_t, std::numeric_limits<T>::digits, g>::enqueue((uint64_t)v);
    }
    T dequeue() {
      return basic_circular_buffer<uint64_t, std::numeric_limits<T>::digits, g>::dequeue();
    }
  };
}

template<typename T, unsigned int n, T guard>
bool jflib::basic_circular_buffer<T,n,guard>::enqueue(const T &v) {
  bool done = false;

  size_t chead = a_load(_head);
  while(!done) {
    size_t ctail = a_load(_tail);
    elt celt;
    celt.binary = a_load(_buffer[chead % _size]);
    size_t achead = a_load(_head);
    if(achead != chead) {
      chead = achead;
      continue;
    }
    size_t nhead = chead + 1;
    if(nhead % _size == ctail % _size)
      return false;
    if(celt.split.val == guard) {
      // entry is empty
      elt nelt;
      nelt.split.id  = celt.split.id + 1;
      nelt.split.val = v;
      done = cas(&_buffer[chead % _size], celt.binary, nelt.binary);
      // done == true <=> sucessfully written entry
    }
    cas(&_head, chead, nhead, &chead);
  }

  return true;
}

template<typename T, unsigned int n, T guard>
void jflib::basic_circular_buffer<T,n,guard>::enqueue_no_check(const T &v) {
  bool done = false;

  size_t chead = a_load(_head);
  while(!done) {
    elt celt;
    celt.binary = a_load(_buffer[chead % _size]);
    size_t achead = a_load(_head);
    if(achead != chead) {
      chead = achead;
      continue;
    }
    size_t nhead = chead + 1;
    if(celt.split.val == guard) {
      // entry is empty
      elt nelt;
      nelt.split.id  = celt.split.id + 1;
      nelt.split.val = v;
      done = cas(&_buffer[chead % _size], celt.binary, nelt.binary);
      // done == true <=> sucessfully written entry
    }
    cas(&_head, chead, nhead, &chead);
  }
}

template<typename T, unsigned int n, T guard>
T jflib::basic_circular_buffer<T,n,guard>::dequeue() {
  bool done = false;
  elt res;

  size_t ctail = a_load(_tail);
  while(!done) {
    bool dequeued = false;
    do {
      if(ctail % _size == a_load(_head) % _size)
        return guard;
      size_t ntail = ctail + 1;
      dequeued = cas(&_tail, ctail, ntail, &ctail);
    } while(!dequeued);

    res.binary = a_load(_buffer[ctail % _size]);
    elt nres;
    nres.split.val = guard;
    while(true) {
      nres.split.id = res.split.id + 1;
      if(res.split.val == guard) {
        if(cas(&_buffer[ctail % _size], res.binary, nres.binary, &res.binary))
          break;
      } else {
        done = cas(&_buffer[ctail % _size], res.binary, nres.binary);
        break;
      }
    }
  }

  return res.split.val;
}
#endif /* __JELLYFISH_CIRCULAR_BUFFER_HPP__ */