/usr/include/jellyfish/cooperative_pool.hpp is in libjellyfish-2.0-dev 2.2.8-3build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 | /* This file is part of Jellyfish.
Jellyfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Jellyfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Jellyfish. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __JELLYFISH_COOPERATIVE_POOL_HPP__
#define __JELLYFISH_COOPERATIVE_POOL_HPP__
#include <assert.h>
#include <unistd.h>
#include <jellyfish/circular_buffer.hpp>
#include <jellyfish/compare_and_swap.hpp>
#include <jellyfish/locks_pthread.hpp>
/// Cooperative pool. Provide a link between a producer and many
/// consumers. It is cooperative in the sense that there is no
/// dedicated thread to the producer. When the number of elements in
/// the queue from the producer to the consumer is less than half,
/// then the thread requesting an element attempts to become the
/// producer. It stays a producer until the producer to consumer queue
/// is full.
///
/// This class must be subclassed using CRTP. `T` is the type of the
/// element passed around in the queues. The derived class must
/// implement the method `bool produce(T& e)`. It is called when a
/// thread has become a producer. It must set in `e` the new element,
/// unless there is nothing more to produce. It returns `true` if
/// there is nothing more to produce (and `e` is not used), `false`
/// otherwise.
///
/// The following example will produce the integers `[0, 1000000]`:
///
/// ~~~{.cc}
/// class sequence : public cooperative_bool<sequence, int> {
/// int cur_;
/// public:
/// sequence() : cur_(0) { }
/// bool produce(int& e) {
/// if(cur_ <= 1000000) {
/// e = cur_++;
/// return false;
/// }
/// return true;
/// }
/// };
/// ~~~
///
/// To access the elements (or the jobs) of the sequence, instantiate
/// a `sequence::job` object and check that it is not empty. If empty,
/// the sequence is over.
///
/// ~~~{.cc}
/// sequence seq; // Sequence, instantiated in main thread
/// // In each consumer thread:
/// while(true) {
/// sequence::job j(seq);
/// if(j.is_empty())
/// break;
/// // Do computation using *j and j->
/// }
/// ~~~
namespace jellyfish {
template<typename D, typename T>
class cooperative_pool {
public:
typedef jflib::circular_buffer<uint32_t> cbT;
typedef T element_type;
private:
uint32_t size_;
element_type* elts_;
cbT cons_prod_; // FIFO from Consumers to Producers
cbT prod_cons_; // FIFO from Producers to Consumers
int has_producer_; // Tell whether a thread is acting as a producer
// RAII token.
class take_token {
int* const token_;
const bool has_token_;
public:
take_token(int* token) : token_(token), has_token_(jflib::cas(token_, 0, 1)) { }
~take_token() {
if(has_token_)
// cas(token_, 1, 0); // Guaranteed to succeed. Memory barrier
jflib::a_store(token_, 0);
}
bool has_token() const { return has_token_; }
};
explicit cooperative_pool(const cooperative_pool& rhs) : size_(0), elts_(0), cons_prod_(0), prod_cons_(0), has_producer_(0) { }
public:
cooperative_pool(uint32_t size) :
size_(size),
elts_(new element_type[size_]),
cons_prod_(size_ + 100),
prod_cons_(size_ + 100),
has_producer_(0)
{
// Every element is empty and ready to be filled by the producer
for(size_t i = 0; i < size_; ++i)
cons_prod_.enqueue_no_check(i);
}
~cooperative_pool() { delete [] elts_; }
uint32_t size() const { return size_; }
element_type* element_begin() { return elts_; }
element_type* element_end() { return elts_ + size_; }
// Contains a filled element or is empty. In which case the producer
// is done and we should stop processing.
class job {
cooperative_pool& cp_;
uint32_t i_; // Index of element
public:
job(cooperative_pool& cp) : cp_(cp), i_(cp_.get_element()) { }
~job() { release(); }
void release() {
if(!is_empty()) {
cp_.cons_prod_.enqueue_no_check(i_);
}
}
bool is_empty() const { return i_ == cbT::guard; }
void next() {
release();
i_ = cp_.get_element();
}
element_type& operator*() { return cp_.elts_[i_]; }
element_type* operator->() { return &cp_.elts_[i_]; }
private:
// Disable copy of job
job(const job& rhs) { }
job& operator=(const job& rhs) { }
};
friend class job;
/// STL compliant iterator
class iterator : public std::iterator<std::input_iterator_tag, element_type> {
job* j_;
public:
iterator() : j_(0) { }
iterator(cooperative_pool& cp) : j_(new job(cp)) { }
iterator(const iterator& rhs) : j_(rhs.j_) { }
bool operator==(const iterator& rhs) const { return j_ == rhs.j_; }
bool operator!=(const iterator& rhs) const { return j_ != rhs.j_; }
element_type& operator*() { return j_->operator*(); }
element_type* operator->() { return j_->operator->(); }
iterator& operator++() {
j_->next();
if(j_->is_empty()) {
delete j_;
j_ = 0;
}
return *this;
}
iterator operator++(int) {
iterator res(*this);
++*this;
return res;
}
};
iterator begin() { return iterator(*this); }
const iterator begin() const { return iterator(*this); }
const iterator end() const { return iterator(); }
private:
enum PRODUCER_STATUS { PRODUCER_PRODUCED, PRODUCER_DONE, PRODUCER_EXISTS };
uint32_t get_element() {
int iteration = 0;
while(true) {
// If less than half full -> try to fill up producer to consumer
// queue. Disregard return value: in any every case will
// attempt to get an element for ourselves
if(prod_cons_.fill() < prod_cons_.size() / 2)
become_producer();
uint32_t i = prod_cons_.dequeue();
if(i != cbT::guard)
return i;
// Try to become producer
switch(become_producer()) {
case PRODUCER_PRODUCED:
iteration = 0; // Produced. Attempt anew to get an element
break;
case PRODUCER_DONE:
return prod_cons_.dequeue();
case PRODUCER_EXISTS:
delay(iteration++); // Already a producer. Wait a bit it adds things to queue
break;
}
}
}
PRODUCER_STATUS become_producer() {
if(prod_cons_.is_closed())
return PRODUCER_DONE;
// Mark that we have a produce (myself). If not, return. Token
// will be release automatically at end of method.
take_token producer_token(&has_producer_);
if(!producer_token.has_token())
return PRODUCER_EXISTS;
uint32_t i = cbT::guard;
try {
while(true) { // Only way out is if produce method is done (returns true or throw an exception)
i = cons_prod_.dequeue();
if(i == cbT::guard)
return PRODUCER_PRODUCED;
if(static_cast<D*>(this)->produce(elts_[i])) // produce returns true if done
break;
prod_cons_.enqueue_no_check(i);
}
} catch(...) { } // Threw an exception -> same as being done
// Producing is done
cons_prod_.enqueue_no_check(i);
prod_cons_.close();
return PRODUCER_DONE;
}
// First 16 operations -> no delay. Then exponential back-off up to a second.
void delay(int iteration) {
if(iteration < 16)
return;
int shift = 10 - std::min(iteration - 16, 10);
usleep((1000000 - 1) >> shift);
}
};
} // namespace jellyfish {
#endif /* __JELLYFISH_COOPERATIVE_POOL_HPP__ */
|