/usr/include/jellyfish/hash_counter.hpp is in libjellyfish-2.0-dev 2.2.8-3build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 | /* This file is part of Jellyfish.
Jellyfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Jellyfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Jellyfish. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __HASH_COUNTER_HPP__
#define __HASH_COUNTER_HPP__
#include <stdexcept>
#include <jellyfish/large_hash_array.hpp>
#include <jellyfish/locks_pthread.hpp>
#include <jellyfish/dumper.hpp>
/// Cooperative version of the hash_counter. In this implementation,
/// it is expected that the given number of threads will call the
/// `add` method regularly. In case the hash table is full, it gets
/// enlarged using all the threads. After the work is done, every
/// thread must call promptly the `done` method.
namespace jellyfish{ namespace cooperative {
template<typename Key, typename word = uint64_t, typename atomic_t = ::atomic::gcc, typename mem_block_t = ::allocators::mmap>
class hash_counter {
public:
typedef typename large_hash::array<Key, word, atomic_t, mem_block_t> array;
typedef typename array::key_type key_type;
typedef typename array::mapped_type mapped_type;
typedef typename array::value_type value_type;
typedef typename array::reference reference;
typedef typename array::const_reference const_reference;
typedef typename array::pointer pointer;
typedef typename array::const_pointer const_pointer;
typedef typename array::eager_iterator eager_iterator;
typedef typename array::lazy_iterator lazy_iterator;
protected:
array* ary_;
array* new_ary_;
uint16_t nb_threads_;
locks::pthread::barrier size_barrier_;
volatile uint16_t size_thid_, done_threads_;
bool do_size_doubling_;
dumper_t<array>* dumper_;
public:
hash_counter(size_t size, // Size of hash. To be rounded up to a power of 2
uint16_t key_len, // Size of key in bits
uint16_t val_len, // Size of val in bits
uint16_t nb_threads, // Number of threads accessing this hash
uint16_t reprobe_limit = 126, // Maximum reprobe
const size_t* reprobes = jellyfish::quadratic_reprobes) :
ary_(new array(size, key_len, val_len, reprobe_limit, reprobes)),
new_ary_(0),
nb_threads_(nb_threads),
size_barrier_(nb_threads),
size_thid_(0),
done_threads_(0),
do_size_doubling_(true),
dumper_(0)
{ }
~hash_counter() {
delete ary_;
}
array* ary() { return ary_; }
const array* ary() const { return ary_; }
size_t size() const { return ary_->size(); }
uint16_t key_len() const { return ary_->key_len(); }
uint16_t val_len() const { return ary_->val_len(); }
uint16_t nb_threads() const { return nb_threads; }
uint16_t reprobe_limit() const { return ary_->max_reprobe(); }
/// Whether we attempt to double the size of the hash when full.
bool do_size_doubling() const { return do_size_doubling_; }
/// Set whether we attempt to double the size of the hash when full.
void do_size_doubling(bool v) { do_size_doubling_ = v; }
/// Set dumper responsible for cleaning out the array.
void dumper(dumper_t<array> *d) { dumper_ = d; }
/// Add `v` to the entry `k`. It returns in `is_new` true if the
/// entry `k` did not exist in the hash. In `id` is returned the
/// final position of `k` in the hash array.
void add(const Key& k, uint64_t v, bool* is_new, size_t* id) {
unsigned int carry_shift = 0;
bool* is_new_ptr = is_new;
size_t* id_ptr = id;
bool is_new_void = false;
size_t id_void = false;
while(!ary_->add(k, v, &carry_shift, is_new_ptr, id_ptr)) {
handle_full_ary();
v &= ~(uint64_t)0 << carry_shift;
// If carry_shift == 0, failed to allocate the first field for
// key, hence status of is_new and value for id are not
// determined yet. On the other hand, if carry_shift > 0, we
// failed while adding extra field for large key, so the status
// of is_new and value of id are known. We do not update them in future
// calls.
if(carry_shift) {
is_new_ptr = &is_new_void;
id_ptr = &id_void;
}
}
}
/// Add `v` to the entry `k`. This method is multi-thread safe. If
/// the entry for `k` does not exists, it is inserted.
///
/// @param k Key to add to
/// @param v Value to add
inline void add(const Key& k, uint64_t v) {
bool is_new;
size_t id;
add(k, v, &is_new, &id);
}
/// Insert the key `k` in the hash. The value is not changed or set
/// to 0 if not already in the hash.
///
/// @param k Key to insert
inline void set(const Key& k) {
bool is_new;
size_t id;
set(k, &is_new, &id);
}
/// Insert the key `k` in the hash. The value is not changed or set
/// to 0 if not already in the hash. Set `is_new` to true if `k` did
/// not already exist in the hash. In `id` is returned the final
/// position of `k` in the hash.
void set(const Key& k, bool* is_new, size_t* id) {
while(!ary_->set(k, is_new, id))
handle_full_ary();
}
/// Update the value of key `k` by adding `v`, if `k` is already
/// present in the hash, otherwise this nothing happens. Returns
/// true if `k` is already in the hash, false otherwise.
bool update_add(const Key& k, uint64_t v) {
Key tmp_key;
return update_add(k, v, tmp_key);
}
bool update_add(const Key& k, uint64_t v, Key& tmp_key) {
unsigned int carry_shift = 0;
while(true) {
if(ary_->update_add(k, v, &carry_shift, tmp_key))
return true;
if(carry_shift == 0)
return false;
handle_full_ary();
v &= ~(uint64_t)0 << carry_shift;
}
}
/// Signify that thread is done and wait for all threads to be done.
void done() {
atomic_t::fetch_add(&done_threads_, (uint16_t)1);
while(!handle_full_ary()) ;
}
protected:
// Double the size of the hash and return false. Unless all the
// thread have reported they are done, in which case do nothing and
// return true.
bool handle_full_ary() {
bool serial_thread = size_barrier_.wait();
if(done_threads_ >= nb_threads_) // All done?
return true;
bool success = false;
if(do_size_doubling_)
success = success || double_size(serial_thread);
if(!success && dumper_) {
if(serial_thread)
dumper_->dump(ary_);
success = true;
size_barrier_.wait();
}
if(!success)
throw std::runtime_error("Hash full");
return false;
}
bool double_size(bool serial_thread) {
if(serial_thread) {// Allocate new array for size doubling
try {
if(ary_->key_len() >= sizeof(size_t) * 8 || ary_->size() < ((size_t)1 << ary_->key_len())) {
// Increase number of keys
new_ary_ = new array(ary_->size() * 2, ary_->key_len(), ary_->val_len(),
ary_->max_reprobe(), ary_->reprobes());
} else {
// Array is already maximum compared to key len, increase val_len
new_ary_ = new array(ary_->size(), ary_->key_len(), ary_->val_len() + 1,
ary_->max_reprobe(), ary_->reprobes());
}
} catch(typename array::ErrorAllocation e) {
new_ary_ = 0;
}
}
size_thid_ = 0;
size_barrier_.wait();
array* my_ary = *(array* volatile*)&new_ary_;
if(!my_ary) // Allocation failed
return false;
// Copy data from old to new
uint16_t id = atomic_t::fetch_add(&size_thid_, (uint16_t)1);
eager_iterator it = ary_->eager_slice(id, nb_threads_);
while(it.next())
my_ary->add(it.key(), it.val());
size_barrier_.wait();
if(serial_thread) { // Set new ary to be current and free old
delete ary_;
ary_ = new_ary_;
}
// Done. Last sync point
size_barrier_.wait();
return true;
}
};
} } // namespace jellyfish { namespace cooperative {
#endif /* __HASH_COUNTER_HPP__ */
|