This file is indexed.

/usr/include/jellyfish/locks_pthread.hpp is in libjellyfish-2.0-dev 2.2.8-3build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
/*  This file is part of Jellyfish.

    Jellyfish is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    Jellyfish is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with Jellyfish.  If not, see <http://www.gnu.org/licenses/>.
*/


#ifndef __JELLYFISH_LOCKS_PTHREAD_HPP__
#define __JELLYFISH_LOCKS_PTHREAD_HPP__

#include <time.h>
#include <sys/time.h>
#include <pthread.h>
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

namespace jellyfish { namespace locks{ namespace pthread {
class cond
{
  pthread_mutex_t   _mutex;
  pthread_cond_t	_cond;

public:
  cond() {
    pthread_mutex_init(&_mutex, NULL);
    pthread_cond_init(&_cond, NULL);
  }

  ~cond() {
    pthread_cond_destroy(&_cond);
    pthread_mutex_destroy(&_mutex);
  }

  inline void lock() { pthread_mutex_lock(&_mutex); }
  inline void unlock() { pthread_mutex_unlock(&_mutex); }
  inline void wait() { pthread_cond_wait(&_cond, &_mutex); }
  inline void signal() { pthread_cond_signal(&_cond); }
  inline void broadcast() { pthread_cond_broadcast(&_cond); }
  inline int timedwait(struct timespec *abstime) {
    return pthread_cond_timedwait(&_cond, &_mutex, abstime);
  }
  inline int timedwait(time_t seconds) {
    struct timespec curtime;
#ifdef HAVE_CLOCK_GETTIME
    clock_gettime(CLOCK_REALTIME, &curtime);
#else
    struct timeval timeofday;
    gettimeofday(&timeofday, 0);
    curtime.tv_sec  = timeofday.tv_sec;
    curtime.tv_nsec = timeofday.tv_usec * 1000;
#endif
    curtime.tv_sec += seconds;
    return timedwait(&curtime);
  }
};

class mutex {
  pthread_mutex_t     _mutex;

public:
  mutex(int type = PTHREAD_MUTEX_DEFAULT) {
    pthread_mutexattr_t attr;
    pthread_mutexattr_init(&attr);
    pthread_mutexattr_settype(&attr, type);
    pthread_mutex_init(&_mutex, &attr);
  }

  ~mutex() {
    pthread_mutex_destroy(&_mutex);
  }

  inline void lock() { pthread_mutex_lock(&_mutex); }
  inline void unlock() { pthread_mutex_unlock(&_mutex); }
  inline bool try_lock() { return !pthread_mutex_trylock(&_mutex); }
};

class mutex_recursive : public mutex {
public:
  mutex_recursive() : mutex(PTHREAD_MUTEX_RECURSIVE) { }
};

class mutex_lock {
  mutex& m_;
public:
  explicit mutex_lock(mutex& m) : m_(m) { m_.lock(); }
  ~mutex_lock() { m_.unlock(); }
};

class Semaphore {
  int _value, _wakeups;
  cond _cv;
public:
        explicit Semaphore(int value) :
  _value(value),
  _wakeups(0)
  {
    // nothing to do
  }

  ~Semaphore() {}

  inline void wait() {
    _cv.lock();
    _value--;
    if (_value < 0) {
      do {
        _cv.wait();
      } while(_wakeups < 1);
      _wakeups--;
    }
    _cv.unlock();
  }

  inline void signal() {
    _cv.lock();
    _value++;
    if(_value <= 0) {
      _wakeups++;
      _cv.signal();
    }
    _cv.unlock();
  }
};

#if defined(_POSIX_BARRIERS) && (_POSIX_BARRIERS - 20012L) >= 0
class barrier
{
  pthread_barrier_t _barrier;

public:
      explicit barrier(unsigned count) {

    pthread_barrier_init(&_barrier, NULL, count);
  }

  ~barrier() {
    pthread_barrier_destroy(&_barrier);
  }

  /// Return true if serial thread.
  inline bool wait() {
    return pthread_barrier_wait(&_barrier) == PTHREAD_BARRIER_SERIAL_THREAD;
  }
};

#else
// #  ifndef PTHREAD_BARRIER_SERIAL_THREAD
// #    define  PTHREAD_BARRIER_SERIAL_THREAD 1
// #  endif

class barrier
{
  int count; // required # of threads
  int current;    // current # of threads that have passed thru
  mutex barlock;  // protect current
  Semaphore barrier1; // implement the barrier
  Semaphore barrier2;

public:
      explicit barrier(unsigned cnt)
  : count(cnt), current(0), barrier1(0), barrier2(0) {
  }

  ~barrier() {}

  inline bool wait() {
    bool ret = false;
    barlock.lock();
    current += 1;
    if(current == count) {
      ret = true;
      for(int i=0; i<count;i++) {
        barrier1.signal();
      }
    }
    barlock.unlock();
    barrier1.wait(); // wait for n threads to arrive

    barlock.lock();
    current -= 1;
    if(current == 0) {
      for(int i=0;i<count;i++) {
        barrier2.signal();
      }
    }
    barlock.unlock();
    barrier2.wait();
    return ret;
  }
};

#endif
} //namespace pthread {

typedef pthread::cond cond;
typedef pthread::mutex mutex;
typedef pthread::barrier barrier;
} } // namespace jellyfish { namespace { locks

#endif /* __JELLYFISH_LOCKS_PTHREAD_HPP__ */