/usr/include/jellyfish/mer_dna.hpp is in libjellyfish-2.0-dev 2.2.8-3build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 | /* This file is part of Jellyfish.
Jellyfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Jellyfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Jellyfish. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __JELLYFISH_MER_DNA_HPP__
#define __JELLYFISH_MER_DNA_HPP__
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdint.h>
#include <string.h>
#include <iostream>
#include <string>
#include <stdexcept>
#include <limits>
#include <iterator>
#include <jellyfish/misc.hpp>
#ifdef HAVE_INT128
#include <jellyfish/int128.hpp>
#endif
namespace jellyfish { namespace mer_dna_ns {
#define R -1
#define I -2
#define O -3
#define A 0
#define C 1
#define G 2
#define T 3
static const int codes[256] = {
O, O, O, O, O, O, O, O, O, O, I, O, O, O, O, O,
O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O,
O, O, O, O, O, O, O, O, O, O, O, O, O, R, O, O,
O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O,
O, A, R, C, R, O, O, G, R, O, O, R, O, R, R, O,
O, O, R, R, T, O, R, R, R, R, O, O, O, O, O, O,
O, A, R, C, R, O, O, G, R, O, O, R, O, R, R, O,
O, O, R, R, T, O, R, R, R, R, O, O, O, O, O, O,
O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O,
O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O,
O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O,
O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O,
O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O,
O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O,
O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O,
O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O
};
#undef R
#undef I
#undef O
#undef A
#undef C
#undef G
#undef T
static const char rev_codes[4] = { 'A', 'C', 'G', 'T' };
extern const char* const error_different_k;
extern const char* const error_short_string;
// Checkered mask. cmask<uint16_t, 1> is every other bit on
// (0x55). cmask<uint16_t,2> is two bits one, two bits off (0x33). Etc.
template<typename U, int len, int l = sizeof(U) * 8 / (2 * len)>
struct cmask {
static const U v =
(cmask<U, len, l - 1>::v << (2 * len)) | (((U)1 << len) - 1);
};
template<typename U, int len>
struct cmask<U, len, 0> {
static const U v = 0;
};
// Fast reverse complement of one word through bit tweedling.
inline uint32_t word_reverse_complement(uint32_t w) {
typedef uint64_t U;
w = ((w >> 2) & cmask<U, 2 >::v) | ((w & cmask<U, 2 >::v) << 2);
w = ((w >> 4) & cmask<U, 4 >::v) | ((w & cmask<U, 4 >::v) << 4);
w = ((w >> 8) & cmask<U, 8 >::v) | ((w & cmask<U, 8 >::v) << 8);
w = ( w >> 16 ) | ( w << 16);
return ((U)-1) - w;
}
inline uint64_t word_reverse_complement(uint64_t w) {
typedef uint64_t U;
w = ((w >> 2) & cmask<U, 2 >::v) | ((w & cmask<U, 2 >::v) << 2);
w = ((w >> 4) & cmask<U, 4 >::v) | ((w & cmask<U, 4 >::v) << 4);
w = ((w >> 8) & cmask<U, 8 >::v) | ((w & cmask<U, 8 >::v) << 8);
w = ((w >> 16) & cmask<U, 16>::v) | ((w & cmask<U, 16>::v) << 16);
w = ( w >> 32 ) | ( w << 32);
return ((U)-1) - w;
}
#ifdef HAVE_INT128
inline unsigned __int128 word_reverse_complement(unsigned __int128 w) {
typedef unsigned __int128 U;
w = ((w >> 2) & cmask<U, 2 >::v) | ((w & cmask<U, 2 >::v) << 2);
w = ((w >> 4) & cmask<U, 4 >::v) | ((w & cmask<U, 4 >::v) << 4);
w = ((w >> 8) & cmask<U, 8 >::v) | ((w & cmask<U, 8 >::v) << 8);
w = ((w >> 16) & cmask<U, 16>::v) | ((w & cmask<U, 16>::v) << 16);
w = ((w >> 32) & cmask<U, 32>::v) | ((w & cmask<U, 32>::v) << 32);
w = ( w >> 64 ) | ( w << 64);
return ((U)-1) - w;
}
#endif
template<typename T>
class base_proxy {
public:
typedef T base_type;
base_proxy(base_type* w, unsigned int i) :
word_(w), i_(i) { }
base_proxy& operator=(char base) { return this->operator=(codes[(int)(unsigned char)base]); }
base_proxy& operator=(int code) {
base_type mask = (base_type)0x3 << i_;
*word_ = (*word_ & ~mask) | ((base_type)code << i_);
return *this;
}
int code() const { return (*word_ >> i_) & (base_type)0x3; }
operator char() const { return rev_codes[code()]; }
private:
base_type* const word_;
unsigned int i_;
};
// enum { CODE_A, CODE_C, CODE_G, CODE_T,
// CODE_RESET = -1, CODE_IGNORE = -2, CODE_COMMENT = -3 };
template<typename T>
struct mer_dna_traits { };
template<typename derived>
class mer_base {
public:
typedef typename mer_dna_traits<derived>::base_type base_type;
enum { CODE_A, CODE_C, CODE_G, CODE_T,
CODE_RESET = -1, CODE_IGNORE = -2, CODE_COMMENT = -3 };
explicit mer_base(unsigned int k) :
_data(new base_type[derived::nb_words(k)])
{
memset(_data, '\0', nb_words(k) * sizeof(base_type));
}
mer_base(const mer_base &m) :
_data(new base_type[nb_words(static_cast<const derived*>(&m)->k())])
{
memcpy(_data, m._data, nb_words(static_cast<const derived*>(&m)->k()) * sizeof(base_type));
}
template<typename U>
mer_base(const unsigned int k, const U& rhs) :
_data(new base_type[nb_words(k)])
{
for(unsigned int i = 0; i < k; ++i)
_data[i] = rhs[i];
clean_msw();
}
~mer_base() {
delete [] _data;
}
operator derived() { return *static_cast<derived*>(this); }
operator const derived() const { return *static_cast<const derived*>(this); }
unsigned int k() const { return static_cast<const derived*>(this)->k(); }
/// Direct access to data. No bound or consistency check. Use with
/// caution!
// base_type operator[](unsigned int i) { return _data[i]; }
base_type word(unsigned int i) const { return _data[i]; }
base_type operator[](unsigned int i) const { return _data[i]; }
/// Direct access to the data array.
const base_type* data() const { return _data; }
/// Same as above, but can modify directly content. Use at your own
/// risk!
base_type& word__(unsigned int i) { return _data[i]; }
base_type* data__() { return _data; }
template<unsigned int alignment>
void read(std::istream& is) {
const unsigned int k = static_cast<const derived*>(this)->k();
const unsigned int l = k / (4 * alignment) + (k % (4 * alignment) != 0);
is.read((char*)_data, l);
}
bool operator==(const mer_base& rhs) const {
unsigned int i = nb_words() - 1;
bool res = (_data[i] & msw()) == (rhs._data[i] & msw());
while(res && i > 7) {
i -= 8;
res = res && (_data[i+7] == rhs._data[i+7]);
res = res && (_data[i+6] == rhs._data[i+6]);
res = res && (_data[i+5] == rhs._data[i+5]);
res = res && (_data[i+4] == rhs._data[i+4]);
res = res && (_data[i+3] == rhs._data[i+3]);
res = res && (_data[i+2] == rhs._data[i+2]);
res = res && (_data[i+1] == rhs._data[i+1]);
res = res && (_data[i] == rhs._data[i] );
}
switch(i) {
case 7: res = res && (_data[6] == rhs._data[6]);
case 6: res = res && (_data[5] == rhs._data[5]);
case 5: res = res && (_data[4] == rhs._data[4]);
case 4: res = res && (_data[3] == rhs._data[3]);
case 3: res = res && (_data[2] == rhs._data[2]);
case 2: res = res && (_data[1] == rhs._data[1]);
case 1: res = res && (_data[0] == rhs._data[0]);
}
return res;
}
bool operator!=(const mer_base& rhs) const { return !this->operator==(rhs); }
bool operator<(const mer_base& rhs) const {
unsigned int i = nb_words();
while(i >= 8) {
i -= 8;
if(_data[i+7] != rhs._data[i+7]) return _data[i+7] < rhs._data[i+7];
if(_data[i+6] != rhs._data[i+6]) return _data[i+6] < rhs._data[i+6];
if(_data[i+5] != rhs._data[i+5]) return _data[i+5] < rhs._data[i+5];
if(_data[i+4] != rhs._data[i+4]) return _data[i+4] < rhs._data[i+4];
if(_data[i+3] != rhs._data[i+3]) return _data[i+3] < rhs._data[i+3];
if(_data[i+2] != rhs._data[i+2]) return _data[i+2] < rhs._data[i+2];
if(_data[i+1] != rhs._data[i+1]) return _data[i+1] < rhs._data[i+1];
if(_data[i] != rhs._data[i]) return _data[i] < rhs._data[i];
}
switch(i) {
case 7: if(_data[6] != rhs._data[6]) return _data[6] < rhs._data[6];
case 6: if(_data[5] != rhs._data[5]) return _data[5] < rhs._data[5];
case 5: if(_data[4] != rhs._data[4]) return _data[4] < rhs._data[4];
case 4: if(_data[3] != rhs._data[3]) return _data[3] < rhs._data[3];
case 3: if(_data[2] != rhs._data[2]) return _data[2] < rhs._data[2];
case 2: if(_data[1] != rhs._data[1]) return _data[1] < rhs._data[1];
case 1: if(_data[0] != rhs._data[0]) return _data[0] < rhs._data[0];
}
return false;
}
bool operator<=(const mer_base& rhs) const {
return *this < rhs || *this == rhs;
}
bool operator>(const mer_base& rhs) const {
return !(*this <= rhs);
}
bool operator>=(const mer_base& rhs) const {
return !(*this < rhs);
}
base_proxy<base_type> base(unsigned int i) { return base_proxy<base_type>(_data + i / wbases, 2 * (i % wbases)); }
const base_proxy<base_type> base(unsigned int i) const { return base_proxy<base_type>(_data + i / wbases, 2 * (i % wbases)); }
// Make current k-mer all As.
void polyA() { memset(_data, 0x00, sizeof(base_type) * nb_words()); clean_msw(); }
void polyC() { memset(_data, 0x55, sizeof(base_type) * nb_words()); clean_msw(); }
void polyG() { memset(_data, 0xaa, sizeof(base_type) * nb_words()); clean_msw(); }
void polyT() { memset(_data, 0xff, sizeof(base_type) * nb_words()); clean_msw(); }
void randomize() {
for(unsigned int i = 0; i < nb_words(); ++i)
_data[i] = random_bits(wbits);
clean_msw();
}
bool is_homopolymer() const {
const base_type base = _data[0] & c3;
const unsigned int barrier = nb_words();
unsigned int i = 0;
for( ; i + 5 < barrier; i += 4) {
if(_data[i ] != ((_data[i ] << 2) | base)) return false;
if(_data[i + 1] != ((_data[i + 1] << 2) | base)) return false;
if(_data[i + 2] != ((_data[i + 2] << 2) | base)) return false;
if(_data[i + 3] != ((_data[i + 3] << 2) | base)) return false;
}
switch(nb_words() - i) {
case 5: if(_data[i] != ((_data[i] << 2) | base) ) return false; ++i;
case 4: if(_data[i] != ((_data[i] << 2) | base) ) return false; ++i;
case 3: if(_data[i] != ((_data[i] << 2) | base) ) return false; ++i;
case 2: if(_data[i] != ((_data[i] << 2) | base) ) return false; ++i;
case 1: if(_data[i] != (((_data[i] << 2) | base) & msw())) return false;
}
return true;
}
derived& operator=(const mer_base& rhs) {
memcpy(_data, rhs._data, nb_words() * sizeof(base_type));
return *static_cast<derived*>(this);
}
derived& operator=(const char* s) {
if(strlen(s) < static_cast<derived*>(this)->k())
throw std::length_error(error_short_string);
from_chars(s);
return *static_cast<derived*>(this);
}
derived& operator=(const std::string& s) {
if(s.size() < static_cast<derived*>(this)->k())
throw std::length_error(error_short_string);
from_chars(s.c_str());
return *static_cast<derived*>(this);
}
// Shift the k-mer by 1 base, left or right. The char version take
// a base 'A', 'C', 'G', or 'T'. The base_type version takes a code
// in [0, 3] (not check of validity of argument, taken modulo
// 4). The return value is the base that was pushed off the side
// ('N' if the input character is not a valid base).
base_type shift_left(int c) {
const base_type r = (_data[nb_words()-1] >> lshift()) & c3;
const unsigned int barrier = nb_words() & (~c3);
base_type c2; // c2 and c1: carries
base_type c1 = (base_type)c & c3;
unsigned int i = 0;
for( ; i < barrier; i += 4) {
c2 = _data[i] >> wshift; _data[i] = (_data[i] << 2) | c1;
c1 = _data[i+1] >> wshift; _data[i+1] = (_data[i+1] << 2) | c2;
c2 = _data[i+2] >> wshift; _data[i+2] = (_data[i+2] << 2) | c1;
c1 = _data[i+3] >> wshift; _data[i+3] = (_data[i+3] << 2) | c2;
}
c2 = c1;
switch(nb_words() - i) {
case 3: c2 = _data[i] >> wshift; _data[i] = (_data[i] << 2) | c1; ++i;
case 2: c1 = _data[i] >> wshift; _data[i] = (_data[i] << 2) | c2; ++i;
case 1: _data[i] = (_data[i] << 2) | c1;
}
clean_msw();
return r;
}
base_type shift_right(int c) {
const base_type r = _data[0] & c3;
if(nb_words() > 1){
const unsigned int barrier = (nb_words() - 1) & (~c3);
unsigned int i = 0;
for( ; i < barrier; i += 4) {
_data[i] = (_data[i] >> 2) | (_data[i+1] << wshift);
_data[i+1] = (_data[i+1] >> 2) | (_data[i+2] << wshift);
_data[i+2] = (_data[i+2] >> 2) | (_data[i+3] << wshift);
_data[i+3] = (_data[i+3] >> 2) | (_data[i+4] << wshift);
}
switch(nb_words() - 1 - i) {
case 3: _data[i] = (_data[i] >> 2) | (_data[i+1] << wshift); ++i;
case 2: _data[i] = (_data[i] >> 2) | (_data[i+1] << wshift); ++i;
case 1: _data[i] = (_data[i] >> 2) | (_data[i+1] << wshift);
}
}
_data[nb_words() - 1] =
((_data[nb_words() - 1] & msw()) >> 2) | (((base_type)c & c3) << lshift());
return r;
}
// Non DNA codes are negative
inline static bool not_dna(int c) { return c < 0; }
inline static int code(char c) { return codes[(int)(unsigned char)c]; }
inline static char rev_code(int x) { return rev_codes[x]; }
static int complement(int x) { return (base_type)3 - x; }
static char complement(char c) {
switch(c) {
case 'A': case 'a': return 'T';
case 'C': case 'c': return 'G';
case 'G': case 'g': return 'C';
case 'T': case 't': return 'A';
}
return 'N';
}
char shift_left(char c) {
int x = code(c);
if(x == -1)
return 'N';
return rev_code(shift_left(x));
}
char shift_right(char c) {
int x = code(c);
if(x == -1)
return 'N';
return rev_code(shift_right(x));
}
void reverse_complement() {
base_type *low = _data;
base_type *high = _data + nb_words() - 1;
for( ; low < high; ++low, --high) {
base_type tmp = word_reverse_complement(*low);
*low = word_reverse_complement(*high);
*high = tmp;
}
if(low == high)
*low = word_reverse_complement(*low);
unsigned int rs = wbits - nb_msb();
if(rs > 0)
large_shift_right(rs);
}
void canonicalize() {
derived rc = this->get_reverse_complement();
if(rc < *this)
*this = rc;
}
derived get_reverse_complement() const {
derived res(*this);
res.reverse_complement();
return res;
}
derived get_canonical() const {
derived rc = this->get_reverse_complement();
return rc < *this ? rc : *this;
}
// Transfomr the k-mer into a C++ string.
std::string to_str() const {
std::string res(static_cast<const derived*>(this)->k(), '\0');
to_chars(res.begin());
return res;
}
// Transform the k-mer into a string. For the char * version,
// assume that the buffer is large enough to receive k+1
// characters (space for '\0' at end of string).
void to_str(char* s) const {
s = to_chars(s);
*s = '\0';
}
// Copy bases as char to the output iterator it. No '\0' is added
// or check made that there is enough space. The iterator pointed
// after the last base is returned.
template<typename OutputIterator>
OutputIterator to_chars(OutputIterator it) const {
int shift = lshift(); // Number of bits to shift to get base
for(int j = nb_words() - 1; j >= 0; --j) {
base_type w = _data[j];
for( ; shift >= 0; shift -= 2, ++it)
*it = rev_code((w >> shift) & c3);
shift = wshift;
}
return it;
}
// Get bits [start, start+len). start must be < 2k, len <=
// sizeof(base_type) and start+len < 2k. No checks
// performed. start and len are in bits, not bases.
base_type get_bits(unsigned int start, unsigned int len) const {
unsigned int q = start / wbits;
unsigned int r = start % wbits;
base_type res = _data[q] >> r;
if(len > wbits - r)
res |= _data[q + 1] << (wbits - r);
return len < (unsigned int)wbits ? res & (((base_type)1 << len) - 1) : res;
}
// Set bits [start, start+len). Same restriction as get_bits. In
// some rare cases, the value written can be larger than the bits
// occupied by the mer itself. The mer is then not valid if some MSB
// are set to 1.
template<bool zero_msw = true>
void set_bits(unsigned int start, unsigned int len, base_type v) {
unsigned int q = start / wbits;
unsigned int r = start % wbits;
unsigned int left = wbits - r;
base_type mask;
if(len > left) {
mask = ((base_type)1 << r) - 1;
_data[q] = (_data[q] & mask) | (v << r);
mask = ((base_type)1 << (len - left)) - 1;
_data[q + 1] = (_data[q + 1] & ~mask) | (v >> (left));
} else {
mask = (len < (unsigned int)wbits ? (((base_type)1 << len) - 1) : (base_type)-1) << r;
_data[q] = (_data[q] & ~mask) | (v << r);
}
if(zero_msw)
clean_msw();
}
// Internal stuff
// Number of words in _data
inline static unsigned int nb_words(unsigned int k) { return (k / wbases) + (k % wbases != 0); }
inline unsigned int nb_words() const { return nb_words(static_cast<const derived*>(this)->k()); }
// Mask of highest word
inline base_type msw() const {
const base_type m = std::numeric_limits<base_type>::max();
return m >> (wbits - nb_msb());
}
// Nb of bits used in highest word
inline unsigned int nb_msb() const {
base_type nb = (static_cast<const derived*>(this)->k() % wbases) * 2;
return nb ? nb : wbits;
}
// How much to shift last base in last word of _data
inline unsigned int lshift() const { return nb_msb() - 2; }
// Make sure the highest bits are all zero
inline void clean_msw() { _data[nb_words() - 1] &= msw(); }
template<typename InputIterator>
bool from_chars(InputIterator it) {
int shift = lshift();
clean_msw();
for(int j = nb_words() - 1; j >= 0; --j) {
base_type& w = _data[j];
w = 0;
for( ; shift >= 0; shift -= 2, ++it) {
int c = code(*it);
if(not_dna(c))
return false;
w |= (base_type)c << shift;
}
shift = wshift;
}
return true;
}
protected:
static const base_type c3 = (base_type)0x3;
static const int wshift = sizeof(base_type) * 8 - 2; // left shift in 1 word
static const int wbases = 4 * sizeof(base_type); // bases in a word
static const int wbits = 8 * sizeof(base_type); // bits in a word
base_type * _data;
// Shift to the right by rs bits (Note bits, not bases)
void large_shift_right(unsigned int rs) {
if(nb_words() > 1) {
const unsigned int barrier = (nb_words() - 1) & (~c3);
const unsigned int ls = wbits - rs;
unsigned int i = 0;
for( ; i < barrier; i += 4) {
_data[i] = (_data[i] >> rs) | (_data[i+1] << ls);
_data[i+1] = (_data[i+1] >> rs) | (_data[i+2] << ls);
_data[i+2] = (_data[i+2] >> rs) | (_data[i+3] << ls);
_data[i+3] = (_data[i+3] >> rs) | (_data[i+4] << ls);
}
switch(nb_words() - 1 - i) {
case 3: _data[i] = (_data[i] >> rs) | (_data[i+1] << ls); ++i;
case 2: _data[i] = (_data[i] >> rs) | (_data[i+1] << ls); ++i;
case 1: _data[i] = (_data[i] >> rs) | (_data[i+1] << ls);
}
}
_data[nb_words() - 1] >>= rs;
clean_msw();
}
};
// Mer type where the length is kept in each mer object: allows to
// manipulate mers of different size within the same application.
template<typename T = uint64_t>
class mer_base_dynamic : public mer_base<mer_base_dynamic<T> > {
public:
typedef T base_type;
typedef mer_base<mer_base_dynamic<T> > super;
explicit mer_base_dynamic(unsigned int k) : super(k), k_(k) { }
mer_base_dynamic(const mer_base_dynamic& rhs) : super(rhs), k_(rhs.k()) { }
mer_base_dynamic(unsigned int k, const char* s) : super(k), k_(k) {
super::from_chars(s);
}
explicit mer_base_dynamic(const char* s) : super(strlen(s)), k_(strlen(s)) {
super::from_chars(s);
}
explicit mer_base_dynamic(const std::string& s) : super(s.size()), k_(s.size()) {
super::from_chars(s.begin());
}
template<typename U>
explicit mer_base_dynamic(unsigned int k, const U& rhs) : super(k, rhs), k_(k) { }
~mer_base_dynamic() { }
mer_base_dynamic& operator=(const mer_base_dynamic rhs) {
if(k_ != rhs.k_)
throw std::length_error(error_different_k);
super::operator=(rhs);
return *this;
}
unsigned int k() const { return k_; }
static unsigned int k(unsigned int k) { return k; }
private:
const unsigned int k_;
};
template<typename T>
struct mer_dna_traits<mer_base_dynamic<T> > {
typedef T base_type;
};
// Mer type where the length is a static variable: the mer size is
// fixed for all k-mers in the application.
//
// The CI (Class Index) template parameter allows to have more than one such
// class with different length in the same application. Each class has
// its own static variable associated with it.
template<typename T = uint64_t, int CI = 0>
class mer_base_static : public mer_base<mer_base_static<T, CI> > {
public:
typedef T base_type;
typedef mer_base<mer_base_static<T, CI> > super;
static const int class_index = CI;
mer_base_static() : super(k_) { }
explicit mer_base_static(unsigned int k) : super(k_) {
if(k != k_)
throw std::length_error(error_different_k);
}
mer_base_static(const mer_base_static& rhs) : super(rhs) { }
mer_base_static(unsigned int k, const char* s) : super(k_) {
super::from_chars(s);
}
explicit mer_base_static(const char* s) : super(k_) {
super::from_chars(s);
}
explicit mer_base_static(const std::string& s) : super(k_) {
super::from_chars(s.begin());
}
template<typename U>
mer_base_static(unsigned int k, const U& rhs) : super(k_, rhs) {
if(k != k_)
throw std::length_error(error_different_k);
}
mer_base_static& operator=(const char* s) { return super::operator=(s); }
mer_base_static& operator=(const std::string& s) { return super::operator=(s); }
~mer_base_static() { }
static unsigned int k(); // { return k_; }
static unsigned int k(unsigned int k) { std::swap(k, k_); return k; }
private:
static unsigned int k_;
};
template<typename T, int CI>
unsigned int mer_base_static<T, CI>::k_ = 22;
template<typename T, int CI>
unsigned int mer_base_static<T, CI>::k() { return k_; }
template<typename T, int CI>
const int mer_base_static<T, CI>::class_index;
template<typename T, int CI>
struct mer_dna_traits<mer_base_static<T, CI> > {
typedef T base_type;
};
typedef std::ostream_iterator<char> ostream_char_iterator;
template<typename derived>
inline std::ostream& operator<<(std::ostream& os, const mer_base<derived>& mer) {
// char s[static_cast<const derived>(mer).k() + 1];
char s[mer.k() + 1];
mer.to_str(s);
return os << s;
}
typedef std::istream_iterator<char> istream_char_iterator;
template<typename derived>
inline std::istream& operator>>(std::istream& is, mer_base<derived>& mer) {
if(is.flags() & std::ios::skipws) {
while(isspace(is.peek())) { is.ignore(1); }
}
char buffer[mer.k() + 1];
is.read(buffer, mer.k());
if(is.gcount() != mer.k())
goto error;
buffer[mer.k()] = '\0';
if(!mer.from_chars(buffer))
goto error;
return is;
error:
is.setstate(std::ios::failbit);
return is;
}
} // namespace mer_dna_ns
typedef mer_dna_ns::mer_base_static<uint32_t, 0> mer_dna32;
typedef mer_dna_ns::mer_base_static<uint64_t, 0> mer_dna64;
#ifdef HAVE_INT128
typedef mer_dna_ns::mer_base_static<unsigned __int128, 0> mer_dna128;
#endif
typedef mer_dna64 mer_dna;
} // namespace jellyfish
#endif
|