/usr/include/jellyfish/misc.hpp is in libjellyfish-2.0-dev 2.2.8-3build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 | /* This file is part of Jellyfish.
Jellyfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Jellyfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Jellyfish. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __JELLYFISH_MISC_HPP__
#define __JELLYFISH_MISC_HPP__
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include <stdint.h>
#include <stdarg.h>
#include <stdlib.h>
#include <errno.h>
#include <exception>
#include <stdexcept>
#include <string>
#include <new>
#include <ostream>
#include <utility>
#include <iterator>
#include <algorithm>
namespace jellyfish {
#define bsizeof(v) (8 * sizeof(v))
typedef uint_fast64_t uint_t;
//#define UINT_C(x)
#define PRIUINTu PRIuFAST64
#define PRIUINTx PRIxFAST64
inline int leading_zeroes(int x) { return __builtin_clz(x); } // CLK
inline int leading_zeroes(unsigned int x) { return __builtin_clz(x); }
inline int leading_zeroes(unsigned long x) { return __builtin_clzl(x); }
inline int leading_zeroes(unsigned long long x) { return __builtin_clzll(x); }
/// The floor of the log base two of n. Undefined if n == 0
template <typename T>
uint16_t floorLog2(T n) {
return sizeof(T) * 8 - 1 - leading_zeroes(n);
}
/// The ceiling of the log base two of n. Undefined if n == 0
template<typename T>
uint16_t ceilLog2(T n) {
uint16_t r = floorLog2(n);
return n > (((T)1) << r) ? r + 1 : r;
}
/// The ceiling of the quotient of the division of a by b. I.e. if b
/// divides a, then div_ceil(a, b) == a / b. Otherwise, div_ceil(a, b)
/// == a / b + 1
template<typename T>
T div_ceil(T a, T b) {
T q = a / b;
return a % b == 0 ? q : q + 1;
}
/// Number of bits necessary to encode number n. Undefined if n ==
/// 0. The following should be true: 2^bitsize(n) - 1 >= n >
/// 2^(bitsize(n) - 1)
template<typename T>
uint16_t bitsize(T n) {
return floorLog2(n) + 1;
}
inline uint32_t reverse_bits(uint32_t v) {
// swap odd and even bits
v = ((v >> 1) & 0x55555555) | ((v & 0x55555555) << 1);
// swap consecutive pairs
v = ((v >> 2) & 0x33333333) | ((v & 0x33333333) << 2);
// swap nibbles ...
v = ((v >> 4) & 0x0F0F0F0F) | ((v & 0x0F0F0F0F) << 4);
// swap bytes
v = ((v >> 8) & 0x00FF00FF) | ((v & 0x00FF00FF) << 8);
// swap 2-byte long pairs
v = ( v >> 16 ) | ( v << 16);
return v;
}
inline uint64_t reverse_bits(uint64_t v) {
v = ((v >> 1) & 0x5555555555555555UL) | ((v & 0x5555555555555555UL) << 1);
v = ((v >> 2) & 0x3333333333333333UL) | ((v & 0x3333333333333333UL) << 2);
v = ((v >> 4) & 0x0F0F0F0F0F0F0F0FUL) | ((v & 0x0F0F0F0F0F0F0F0FUL) << 4);
v = ((v >> 8) & 0x00FF00FF00FF00FFUL) | ((v & 0x00FF00FF00FF00FFUL) << 8);
v = ((v >> 16) & 0x0000FFFF0000FFFFUL) | ((v & 0x0000FFFF0000FFFFUL) << 16);
v = ( v >> 32 ) | ( v << 32);
return v;
}
uint64_t bogus_sum(void *data, size_t len);
template <typename T>
size_t bits_to_bytes(T bits) {
return (size_t)((bits / 8) + (bits % 8 != 0));
}
template <typename T>
union Tptr {
void *v;
T *t;
};
template <typename T>
T *calloc_align(size_t nmemb, size_t alignment) {
Tptr<T> ptr;
if(posix_memalign(&ptr.v, alignment, sizeof(T) * nmemb) < 0)
throw std::bad_alloc();
return ptr.t;
}
/* Be pedantic about memory access. Any misaligned access will
* generate a BUS error.
*/
void disabled_misaligned_mem_access();
/* Raison d'etre of this version of mem_copy: It seems we have slow
* down due to misaligned cache accesses. glibc memcpy does unaligned
* memory accesses and crashes when they are disabled. This version
* does only aligned memory access (see above).
*/
template <typename T>
void mem_copy(char *dest, const char *src, const T &len) {
// dumb copying char by char
for(T i = (T)0; i < len; ++i)
*dest++ = *src++;
}
/* Slice a large number (total) in almost equal parts. return [start,
end) corresponding to the ith part (0 <= i < number_of_slices)
*/
template<typename T>
std::pair<T,T> slice(T i, T number_of_slices, T total) {
const T slice_size = total / number_of_slices;
const T slice_remain = total % number_of_slices;
const T start = std::max((T)0,
std::min(total, i * slice_size + (i > 0 ? slice_remain : 0)));
const T end = std::max((T)0,
std::min(total, (i + 1) * slice_size + slice_remain));
return std::make_pair(start, end);
}
uint64_t random_bits(int length);
inline uint64_t random_bits() { return random_bits(64); }
// Quote string that could contain shell special characters
std::string quote_arg(const std::string& arg);
std::streamoff get_file_size(std::istream& is);
/// Find the first element for which the predicate p is false. The
/// input range [first, last) is assumed to be sorted according to the
/// predicate p: p(x) is false and p(y) is true implies x comes after
/// y in the input range. (I.e., the elements for which p(x) is true
/// come first followed by the elements for which p(x) is false).
template <class ForwardIterator, class Predicate>
ForwardIterator binary_search_first_false(ForwardIterator first, ForwardIterator last, Predicate p)
{
ForwardIterator it;
typename std::iterator_traits<ForwardIterator>::difference_type count, step;
count = std::distance(first,last);
while(count>0) {
it = first; step = count / 2; std::advance(it,step);
if(p(*it)) {
first = ++it;
count -= step + 1;
} else
count=step;
}
return first;
}
/// An integer type which behaves like a random pointer to
/// itself. Meaning, with `it(5)`, then `*it == 5` and `*++it ==
/// 6`. In other words, it is a pointer to an array `a` initialized
/// with `a[i] = i`, except the array is not instantiated and does not
/// have a fixed size.
template<typename T>
class pointer_integer : public std::iterator<std::random_access_iterator_tag, T> {
T x_;
typedef typename std::iterator<std::random_access_iterator_tag, T> super;
public:
typedef T value_type;
typedef typename super::difference_type difference_type;
typedef typename super::pointer pointer;
typedef typename super::reference reference;
typedef typename super::iterator_category iterator_category;
pointer_integer() : x_(0) { }
explicit pointer_integer(T x) : x_(x) { }
pointer_integer(const pointer_integer& rhs) : x_(rhs.x_) { }
pointer_integer& operator=(const pointer_integer& rhs) {
x_ = rhs.x_;
return *this;
}
pointer_integer& operator++() { ++x_; return *this; }
pointer_integer operator++(int) {
pointer_integer res(*this);
++x_;
return res;
}
pointer_integer& operator--() { --x_; return *this; }
pointer_integer operator--(int) {
pointer_integer res(*this);
--x_;
return res;
}
bool operator==(const pointer_integer& rhs) const { return x_ == rhs.x_; }
bool operator!=(const pointer_integer& rhs) const { return x_ != rhs.x_; }
bool operator<(const pointer_integer& rhs) const { return x_ < rhs.x_; }
bool operator>(const pointer_integer& rhs) const { return x_ > rhs.x_; }
bool operator<=(const pointer_integer& rhs) const { return x_ <= rhs.x_; }
bool operator>=(const pointer_integer& rhs) const { return x_ >= rhs.x_; }
reference operator*() { return x_; }
pointer operator->() { return &x_; } // Probably useless
difference_type operator-(pointer_integer& rhs) { return x_ - rhs.x_; }
pointer_integer operator+(T x) const { return pointer_integer(x_ + x); }
pointer_integer operator-(T x) const { return pointer_integer(x_ - x); }
pointer_integer& operator+=(T x) { x_ += x; return *this; }
pointer_integer& operator-=(T x) { x_ -= x; return *this; }
value_type operator[](T i) const { return x_ + i; }
};
template<typename T>
pointer_integer<T> operator+(T x, pointer_integer<T>& p) { return pointer_integer<T>(x + *p); }
template<typename T>
pointer_integer<T> operator-(T x, pointer_integer<T>& p) { return pointer_integer<T>(x - *p); }
} // namespace jellyfish
#endif // __MISC_HPP__
|