/usr/include/jellyfish/rectangular_binary_matrix.hpp is in libjellyfish-2.0-dev 2.2.8-3build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 | /* This file is part of Jellyfish.
Jellyfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Jellyfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Jellyfish. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __JELLYFISH_RECTANGULAR_BINARY_MATRIX_HPP__
#define __JELLYFISH_RECTANGULAR_BINARY_MATRIX_HPP__
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <time.h>
#include <jellyfish/misc.hpp>
#include <iostream>
#include <exception>
#include <stdexcept>
#include <vector>
#include <limits>
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
// Column major representation
//
// Rectangular matrices on Z/2Z of size _r x _c where 1<=_r<=64 (_c is
// not limited) and _r <= _c. I.e., the matrix can be stored as an
// array of 64 bit word, each representing a column (the highest 64-_r
// bits of each word are set to 0).
//
// Multiplication between a matrix and vector of size _c x 1 gives a
// vector of size _r x 1 stored as one 64 bit word. A matrix with a
// NULL _columns pointer behaves like the identity.
namespace jellyfish {
class RectangularBinaryMatrix {
explicit RectangularBinaryMatrix(unsigned int c)
: _columns(NULL)
, _r(c)
, _c(c)
{ }
public:
RectangularBinaryMatrix(unsigned int r, unsigned c)
: _columns(alloc(r, c)), _r(r), _c(c) { }
RectangularBinaryMatrix(const RectangularBinaryMatrix &rhs)
: _columns(rhs._columns ? alloc(rhs._r, rhs._c) : NULL)
, _r(rhs._r)
, _c(rhs._c)
{
if(_columns)
memcpy(_columns, rhs._columns, sizeof(uint64_t) * _c);
}
RectangularBinaryMatrix(RectangularBinaryMatrix&& rhs)
: _columns(rhs._columns)
, _r(rhs._r)
, _c(rhs._c)
{
rhs._columns = 0;
}
// Initialize from raw data. raw must contain at least c words.
template<typename T>
RectangularBinaryMatrix(const T &raw, unsigned int r, unsigned c)
: _columns(alloc(r, c)), _r(r), _c(c) {
for(unsigned int i = 0; i < _c; ++i)
_columns[i] = raw[i] & cmask();
}
~RectangularBinaryMatrix() {
free(_columns);
}
static RectangularBinaryMatrix identity(unsigned c) {
return RectangularBinaryMatrix(c);
}
static RectangularBinaryMatrix identity(unsigned r, unsigned c) {
RectangularBinaryMatrix res(r, c);
res.init_low_identity();
return res;
}
RectangularBinaryMatrix &operator=(const RectangularBinaryMatrix &rhs) {
if(_r != rhs._r || _c != rhs._c)
throw std::invalid_argument("RHS matrix dimensions do not match");
memcpy(_columns, rhs._columns, sizeof(uint64_t) * _c);
return *this;
}
RectangularBinaryMatrix& operator=(RectangularBinaryMatrix&& rhs) {
if(_r != rhs._r || _c != rhs._c)
throw std::invalid_argument("RHS matrix dimensions do not match");
std::swap(_columns, rhs._columns);
return *this;
}
bool operator==(const RectangularBinaryMatrix &rhs) const {
if(_r != rhs._r || _c != rhs._c)
return false;
return !memcmp(_columns, rhs._columns, sizeof(uint64_t) * _c);
}
bool operator!=(const RectangularBinaryMatrix &rhs) const {
return !(*this == rhs);
}
// Get i-th column. No check on range
uint64_t operator[](unsigned int i) const { return _columns ? _columns[i] : ((uint64_t)1 << i); }
unsigned int r() const { return _r; }
unsigned int c() const { return _c; }
// True if every column is zero
bool is_zero() const {
uint64_t *p = _columns;
while(*p == 0 && p < _columns + _c)
++p;
return (p - _columns) == _c;
}
// Randomize the content of the matrix
void randomize(uint64_t (*rng)()) {
for(unsigned int i = 0; i < _c; ++i)
_columns[i] = rng() & cmask();
}
//void randomize() { randomize(rng); }
// Make and check that the matrix the lower right corner of the
// identity.
void init_low_identity(bool simplify = true);
bool is_low_identity() const;
// Left matrix vector multiplication. Type T supports the operator
// v[i] to return the i-th 64 bit word of v.
template<typename T>
uint64_t times_loop(const T &v) const;
#ifdef HAVE_SSE
// This SSE implementation only works if the number of columns is
// even.
template<typename T>
uint64_t times_sse(const T &v) const;
#endif
#ifdef HAVE_INT128
// Implementation using __int128
template<typename T>
uint64_t times_128(const T& v) const;
#endif
template<typename T>
inline uint64_t times(const T& v) const {
#ifdef HAVE_SSE
return times_sse(v);
#elif HAVE_INT128
return times_128(v);
#else
return times_loop(v);
#endif
}
// Return a matrix which is the "pseudo inverse" of this matrix. It
// is assumed that there is above this square matrix an identity
// block and a zero so as to make the matrix squared. Raise an
// exception std::domain_error if the matrix is singular.
RectangularBinaryMatrix pseudo_inverse() const;
// Return the multiplication of this and rhs. As in pseudo_inverse,
// the two matrices are viewed as being squared, padded above by the
// identity.
RectangularBinaryMatrix pseudo_multiplication(const RectangularBinaryMatrix &rhs) const;
// Initialize the object with a pseudo-invertible matrix and return its pseudo-inverse
RectangularBinaryMatrix randomize_pseudo_inverse(uint64_t (*rng)());
RectangularBinaryMatrix randomize_pseudo_inverse() { return randomize_pseudo_inverse(random_bits); }
// Return the rank of the matrix. The matrix is assumed to be
// squared, padded above by the identity.
unsigned int pseudo_rank() const;
// Display matrix
void print(std::ostream &os) const;
template<typename T>
void print_vector(std::ostream &os, const T &v) const;
// Nb words in vector for multiplication
uint64_t nb_words() const { return (_c >> 6) + ((_c & 0x3f) != 0); }
// Mask of most significant bit in most significant word of a vector
// with _c rows.
uint64_t msb() const {
int shift = _c & 0x3f;
if(shift == 0)
shift = sizeof(uint64_t) * 8;
return (uint64_t)1 << (shift - 1);
}
private:
// Store column by column. A column may use one word. By
// convention, the "unused" bits (most significant bits) of each
// column are set to 0.
uint64_t * _columns;
const unsigned int _r, _c;
static uint64_t *alloc(unsigned int r, unsigned int c) __attribute__((malloc));
// Mask for column word (zero msb)
uint64_t cmask() const { return std::numeric_limits<uint64_t>::max() >> (std::numeric_limits<uint64_t>::digits - _r); }
// Mask of highest word of a vector with _c rows (Most Significant
// Word)
uint64_t msw() const { return (msb() << 1) - 1; }
// Nb of bits used in highest word of vector with _c rows.
uint64_t nb_msb() const {
uint64_t nb = _c & 0x3f;
return nb ? nb : sizeof(uint64_t) * 8;
}
// Allow to change the matrix vectors. No check on i.
uint64_t & get(unsigned int i) { return _columns[i]; }
};
template<typename T>
uint64_t RectangularBinaryMatrix::times_loop(const T &v) const {
if(!_columns) return v[0] & cmask();
uint64_t *p = _columns + _c - 1;
uint64_t res = 0, x = 0, j = 0;
const uint64_t one = (uint64_t)1;
for(unsigned int i = 0; i < nb_words(); ++i) {
j = sizeof(uint64_t) * 8;
x = v[i];
if(i == nb_words() - 1) {
x &= msw();
j = nb_msb();
}
for( ; j > 7; j -= 8, p -= 8) {
res ^= (-(x & one)) & p[0]; x >>= 1;
res ^= (-(x & one)) & p[-1]; x >>= 1;
res ^= (-(x & one)) & p[-2]; x >>= 1;
res ^= (-(x & one)) & p[-3]; x >>= 1;
res ^= (-(x & one)) & p[-4]; x >>= 1;
res ^= (-(x & one)) & p[-5]; x >>= 1;
res ^= (-(x & one)) & p[-6]; x >>= 1;
res ^= (-(x & one)) & p[-7]; x >>= 1;
}
}
// Finish the loop
switch(j) {
case 7: res ^= (-(x & one)) & *p--; x >>= 1;
case 6: res ^= (-(x & one)) & *p--; x >>= 1;
case 5: res ^= (-(x & one)) & *p--; x >>= 1;
case 4: res ^= (-(x & one)) & *p--; x >>= 1;
case 3: res ^= (-(x & one)) & *p--; x >>= 1;
case 2: res ^= (-(x & one)) & *p--; x >>= 1;
case 1: res ^= (-(x & one)) & *p;
}
return res;
}
#ifdef HAVE_SSE
template<typename T>
uint64_t RectangularBinaryMatrix::times_sse(const T &v) const {
if(!_columns) return v[0] & cmask();
#define FFs ((uint64_t)-1)
static const uint64_t smear[8] asm("smear") __attribute__ ((aligned(16),used)) =
{0, 0, 0, FFs, FFs, 0, FFs, FFs};
typedef uint64_t xmm_t __attribute__((vector_size(16)));
uint64_t *p = _columns + _c - 8;
// //#ifdef __ICC
// register xmm_t acc;
// register xmm_t load;
// memset(&acc, '\0', 16);
// memset(&load, '\0', 16);
// #else
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wuninitialized"
#endif
xmm_t acc = acc ^ acc; // Set acc to 0
xmm_t load = load ^ load;
#ifdef __clang__
#pragma clang diagnostic pop
#endif
// #endif
// // Zero out acc
// #pragma GCC diagnostic push
// #pragma GCC diagnostic ignored "-Wuninitialized"
// asm("pxor %0,%0\n\t" : "=x"(acc) : "0"(acc));
// asm("pxor %0,%0\n\t" : "=x"(load) : "0"(load));
// #pragma GCC diagnostic pop
// i is the lower 2 bits of x, and an index into the smear array. Compute res ^= smear[i] & p[j].
#ifdef __x86_64__
#define AND_XOR(off) \
asm("movdqa (%[s],%[i]), %[load]\n\t" \
"pand " #off "(%[p]),%[load]\n\t" \
"pxor %[load],%[acc]\n\t" \
: [acc]"=&x"(acc) \
: "[acc]"(acc), [i]"r"(i), [p]"r"(p), [s]"r"(smear), [load]"x"(load))
#else
#define AND_XOR(off) do { \
xmm_t a = { smear[i / 8], smear[i / 8 + 1] }; \
xmm_t b = { p[(off) / 8], p[(off) / 8 + 1] }; \
acc ^= a & b; \
} while (0)
#endif
uint64_t i, j = 0, x = 0;
for(unsigned int w = 0; w < nb_words(); ++w) {
x = v[w];
j = sizeof(uint64_t) * 8;
if(w == nb_words() - 1) {
x &= msw();
j = nb_msb();
}
for( ; j > 7; j -= 8, p -= 8) {
i = (x & (uint64_t)0x3) << 4;
AND_XOR(0x30);
x >>= 2;
i = (x & (uint64_t)0x3) << 4;
AND_XOR(0x20);
x >>= 2;
i = (x & (uint64_t)0x3) << 4;
AND_XOR(0x10);
x >>= 2;
i = (x & (uint64_t)0x3) << 4;
AND_XOR(0);
x >>= 2;
}
}
// Finish loop
p = _columns;
switch(j) {
case 6:
i = (x & (uint64_t)0x3) << 4;
AND_XOR(0x20);
x >>= 2;
case 4:
i = (x & (uint64_t)0x3) << 4;
AND_XOR(0x10);
x >>= 2;
case 2:
i = (x & (uint64_t)0x3) << 4;
AND_XOR(0);
}
// Get result out
#ifdef __x86_64__
uint64_t res1, res2;
asm("movd %[acc], %[res1]\n\t"
"psrldq $8, %[acc]\n\t"
"movd %[acc], %[res2]\n\t"
: [res1]"=r"(res1), [res2]"=r"(res2)
: [acc]"x"(acc));
return res1 ^ res2;
#else
return acc[0] ^ acc[1];
#endif
}
#endif // HAVE_SSE
#ifdef HAVE_INT128
template<typename T>
uint64_t RectangularBinaryMatrix::times_128(const T &v) const {
if(!_columns) return v[0] & cmask();
typedef unsigned __int128 u128;
static const u128 smear[4] =
{ (u128)0,
(((u128)1 << 64) - 1) << 64,
((u128)1 << 64) - 1,
(u128)-1
};
u128* p = (u128*)(_columns + _c - 2);
u128 res = 0;
// u128 res = res ^ res;
uint64_t j = 0, x = 0;
for(unsigned int w = 0; w < nb_words(); ++w) {
x = v[w];
j = sizeof(uint64_t) * 8;
if(w == nb_words() - 1) {
x &= msw();
j = nb_msb();
}
for( ; j > 7; j -= 8, p -= 4) {
res ^= smear[x & (uint64_t)0x3] & p[ 0]; x >>= 2;
res ^= smear[x & (uint64_t)0x3] & p[-1]; x >>= 2;
res ^= smear[x & (uint64_t)0x3] & p[-2]; x >>= 2;
res ^= smear[x & (uint64_t)0x3] & p[-3]; x >>= 2;
}
}
switch(j) {
case 6: res ^= smear[x & (uint64_t)0x3] & *p--; x >>=2;
case 4: res ^= smear[x & (uint64_t)0x3] & *p--; x >>=2;
case 2: res ^= smear[x & (uint64_t)0x3] & *p;
}
return (res ^ (res >> 64)) & smear[2];
}
#endif // HAVE_INT128
}
#endif
|