This file is indexed.

/usr/include/jellyfish/rectangular_binary_matrix.hpp is in libjellyfish-2.0-dev 2.2.8-3build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
/*  This file is part of Jellyfish.

    Jellyfish is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    Jellyfish is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with Jellyfish.  If not, see <http://www.gnu.org/licenses/>.
*/

#ifndef __JELLYFISH_RECTANGULAR_BINARY_MATRIX_HPP__
#define __JELLYFISH_RECTANGULAR_BINARY_MATRIX_HPP__

#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <time.h>
#include <jellyfish/misc.hpp>
#include <iostream>
#include <exception>
#include <stdexcept>
#include <vector>
#include <limits>

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

// Column major representation
//
// Rectangular matrices on Z/2Z of size _r x _c where 1<=_r<=64 (_c is
// not limited) and _r <= _c. I.e., the matrix can be stored as an
// array of 64 bit word, each representing a column (the highest 64-_r
// bits of each word are set to 0).
//
// Multiplication between a matrix and vector of size _c x 1 gives a
// vector of size _r x 1 stored as one 64 bit word. A matrix with a
// NULL _columns pointer behaves like the identity.

namespace jellyfish {
  class RectangularBinaryMatrix {
    explicit RectangularBinaryMatrix(unsigned int c)
      : _columns(NULL)
      , _r(c)
      , _c(c)
    { }

  public:
    RectangularBinaryMatrix(unsigned int r, unsigned c)
      : _columns(alloc(r, c)), _r(r), _c(c) { }
    RectangularBinaryMatrix(const RectangularBinaryMatrix &rhs)
      : _columns(rhs._columns ? alloc(rhs._r, rhs._c) : NULL)
      , _r(rhs._r)
      , _c(rhs._c)
    {
      if(_columns)
        memcpy(_columns, rhs._columns, sizeof(uint64_t) * _c);
    }
    RectangularBinaryMatrix(RectangularBinaryMatrix&& rhs)
      : _columns(rhs._columns)
      , _r(rhs._r)
      , _c(rhs._c)
    {
      rhs._columns = 0;
    }
    // Initialize from raw data. raw must contain at least c words.
    template<typename T>
    RectangularBinaryMatrix(const T &raw, unsigned int r, unsigned c)
      : _columns(alloc(r, c)), _r(r), _c(c) {
      for(unsigned int i = 0; i < _c; ++i)
        _columns[i] = raw[i] & cmask();
    }
    ~RectangularBinaryMatrix() {
      free(_columns);
    }

    static RectangularBinaryMatrix identity(unsigned c) {
      return RectangularBinaryMatrix(c);
    }

    static RectangularBinaryMatrix identity(unsigned r, unsigned c) {
      RectangularBinaryMatrix res(r, c);
      res.init_low_identity();
      return res;
    }

    RectangularBinaryMatrix &operator=(const RectangularBinaryMatrix &rhs) {
      if(_r != rhs._r || _c != rhs._c)
        throw std::invalid_argument("RHS matrix dimensions do not match");
      memcpy(_columns, rhs._columns, sizeof(uint64_t) * _c);
      return *this;
    }
    RectangularBinaryMatrix& operator=(RectangularBinaryMatrix&& rhs) {
      if(_r != rhs._r || _c != rhs._c)
        throw std::invalid_argument("RHS matrix dimensions do not match");
      std::swap(_columns, rhs._columns);
      return *this;
    }

    bool operator==(const RectangularBinaryMatrix &rhs) const {
      if(_r != rhs._r || _c != rhs._c)
        return false;
      return !memcmp(_columns, rhs._columns, sizeof(uint64_t) * _c);
    }
    bool operator!=(const RectangularBinaryMatrix &rhs) const {
      return !(*this == rhs);
    }

    // Get i-th column. No check on range
    uint64_t operator[](unsigned int i) const { return _columns ? _columns[i] : ((uint64_t)1 << i); }

    unsigned int r() const { return _r; }
    unsigned int c() const { return _c; }

    // True if every column is zero
    bool is_zero() const {
      uint64_t *p = _columns;
      while(*p == 0 && p < _columns + _c)
        ++p;
      return (p - _columns) == _c;
    }

    // Randomize the content of the matrix
    void randomize(uint64_t (*rng)()) {
      for(unsigned int i = 0; i < _c; ++i)
        _columns[i] = rng() & cmask();
    }
    //void randomize() { randomize(rng); }

    // Make and check that the matrix the lower right corner of the
    // identity.
    void init_low_identity(bool simplify = true);
    bool is_low_identity() const;

    // Left matrix vector multiplication. Type T supports the operator
    // v[i] to return the i-th 64 bit word of v.
    template<typename T>
    uint64_t times_loop(const T &v) const;


#ifdef HAVE_SSE
    // This SSE implementation only works if the number of columns is
    // even.
    template<typename T>
    uint64_t times_sse(const T &v) const;
#endif

#ifdef HAVE_INT128
    // Implementation using __int128
    template<typename T>
    uint64_t times_128(const T& v) const;
#endif

    template<typename T>
    inline uint64_t times(const T& v) const {
#ifdef HAVE_SSE
      return times_sse(v);
#elif HAVE_INT128
      return times_128(v);
#else
      return times_loop(v);
#endif
    }

    // Return a matrix which is the "pseudo inverse" of this matrix. It
    // is assumed that there is above this square matrix an identity
    // block and a zero so as to make the matrix squared. Raise an
    // exception std::domain_error if the matrix is singular.
    RectangularBinaryMatrix pseudo_inverse() const;

    // Return the multiplication of this and rhs. As in pseudo_inverse,
    // the two matrices are viewed as being squared, padded above by the
    // identity.
    RectangularBinaryMatrix pseudo_multiplication(const RectangularBinaryMatrix &rhs) const;

    // Initialize the object with a pseudo-invertible matrix and return its pseudo-inverse
    RectangularBinaryMatrix randomize_pseudo_inverse(uint64_t (*rng)());
    RectangularBinaryMatrix randomize_pseudo_inverse() { return randomize_pseudo_inverse(random_bits); }

    // Return the rank of the matrix. The matrix is assumed to be
    // squared, padded above by the identity.
    unsigned int pseudo_rank() const;

    // Display matrix
    void print(std::ostream &os) const;
    template<typename T>
    void print_vector(std::ostream &os, const T &v) const;

    // Nb words in vector for multiplication
    uint64_t nb_words() const { return (_c >> 6) + ((_c & 0x3f) != 0); }
    // Mask of most significant bit in most significant word of a vector
    // with _c rows.
    uint64_t msb() const {
      int shift = _c & 0x3f;
      if(shift == 0)
        shift = sizeof(uint64_t) * 8;
      return (uint64_t)1 << (shift - 1);
    }

  private:
    // Store column by column. A column may use one word.  By
    // convention, the "unused" bits (most significant bits) of each
    // column are set to 0.
    uint64_t *         _columns;
    const unsigned int _r, _c;

    static uint64_t *alloc(unsigned int r, unsigned int c) __attribute__((malloc));
    // Mask for column word (zero msb)
    uint64_t cmask() const { return std::numeric_limits<uint64_t>::max() >> (std::numeric_limits<uint64_t>::digits - _r); }
    // Mask of highest word of a vector with _c rows (Most Significant
    // Word)
    uint64_t msw() const { return (msb() << 1) - 1; }
    // Nb of bits used in highest word of vector with _c rows.
    uint64_t nb_msb() const {
      uint64_t nb = _c & 0x3f;
      return nb ? nb : sizeof(uint64_t) * 8;
    }
    // Allow to change the matrix vectors. No check on i.
    uint64_t & get(unsigned int i) { return _columns[i]; }
  };

  template<typename T>
  uint64_t RectangularBinaryMatrix::times_loop(const T &v) const {
    if(!_columns) return v[0] & cmask();
    uint64_t       *p   = _columns + _c - 1;
    uint64_t        res = 0, x = 0, j = 0;
    const uint64_t  one = (uint64_t)1;

    for(unsigned int i = 0; i < nb_words(); ++i) {
      j = sizeof(uint64_t) * 8;
      x = v[i];
      if(i == nb_words() - 1) {
        x &= msw();
        j  = nb_msb();
      }
      for( ; j > 7; j -= 8, p -= 8) {
        res ^= (-(x & one)) & p[0];  x >>= 1;
        res ^= (-(x & one)) & p[-1]; x >>= 1;
        res ^= (-(x & one)) & p[-2]; x >>= 1;
        res ^= (-(x & one)) & p[-3]; x >>= 1;
        res ^= (-(x & one)) & p[-4]; x >>= 1;
        res ^= (-(x & one)) & p[-5]; x >>= 1;
        res ^= (-(x & one)) & p[-6]; x >>= 1;
        res ^= (-(x & one)) & p[-7]; x >>= 1;
      }
    }

    // Finish the loop
    switch(j) {
    case 7: res ^= (-(x & one)) & *p--; x >>= 1;
    case 6: res ^= (-(x & one)) & *p--; x >>= 1;
    case 5: res ^= (-(x & one)) & *p--; x >>= 1;
    case 4: res ^= (-(x & one)) & *p--; x >>= 1;
    case 3: res ^= (-(x & one)) & *p--; x >>= 1;
    case 2: res ^= (-(x & one)) & *p--; x >>= 1;
    case 1: res ^= (-(x & one)) & *p;
    }

    return res;
  }

#ifdef HAVE_SSE
  template<typename T>
  uint64_t RectangularBinaryMatrix::times_sse(const T &v) const {
    if(!_columns) return v[0] & cmask();
#define FFs ((uint64_t)-1)
    static const uint64_t smear[8] asm("smear") __attribute__ ((aligned(16),used)) =
      {0, 0, 0, FFs, FFs, 0, FFs, FFs};
    typedef uint64_t xmm_t __attribute__((vector_size(16)));

    uint64_t *p = _columns + _c - 8;

    // //#ifdef __ICC
    // register xmm_t acc;
    // register xmm_t load;
    // memset(&acc, '\0', 16);
    // memset(&load, '\0', 16);
    // #else
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wuninitialized"
#endif
    xmm_t acc  = acc ^ acc; // Set acc to 0
    xmm_t load = load ^ load;
#ifdef __clang__
#pragma clang diagnostic pop
#endif
    // #endif

//     // Zero out acc
// #pragma GCC diagnostic push
// #pragma GCC diagnostic ignored "-Wuninitialized"
//     asm("pxor %0,%0\n\t" : "=x"(acc) : "0"(acc));
//     asm("pxor %0,%0\n\t" : "=x"(load) : "0"(load));
// #pragma GCC diagnostic pop

    // i is the lower 2 bits of x, and an index into the smear array. Compute res ^= smear[i] & p[j].
#ifdef __x86_64__
#define AND_XOR(off)                                                    \
    asm("movdqa (%[s],%[i]), %[load]\n\t"                               \
        "pand " #off "(%[p]),%[load]\n\t"                               \
        "pxor %[load],%[acc]\n\t"                                       \
        : [acc]"=&x"(acc)                                               \
        : "[acc]"(acc),  [i]"r"(i), [p]"r"(p), [s]"r"(smear), [load]"x"(load))
#else
#define AND_XOR(off) do {                                               \
        xmm_t a = { smear[i / 8], smear[i / 8 + 1] };                   \
        xmm_t b = { p[(off) / 8], p[(off) / 8 + 1] };                   \
        acc ^= a & b;                                                   \
    } while (0)
#endif

    uint64_t i, j = 0, x = 0;
    for(unsigned int w = 0; w < nb_words(); ++w) {
      x = v[w];
      j = sizeof(uint64_t) * 8;
      if(w == nb_words() - 1) {
        x &= msw();
        j  = nb_msb();
      }
      for( ; j > 7; j -= 8, p -= 8) {
        i = (x & (uint64_t)0x3) << 4;
        AND_XOR(0x30);
        x >>= 2;
        i = (x & (uint64_t)0x3) << 4;
        AND_XOR(0x20);
        x >>= 2;
        i = (x & (uint64_t)0x3) << 4;
        AND_XOR(0x10);
        x >>= 2;
        i = (x & (uint64_t)0x3) << 4;
        AND_XOR(0);
        x >>= 2;
      }
    }

    // Finish loop
    p = _columns;
    switch(j) {
    case 6:
      i = (x & (uint64_t)0x3) << 4;
      AND_XOR(0x20);
      x >>= 2;
    case 4:
      i = (x & (uint64_t)0x3) << 4;
      AND_XOR(0x10);
      x >>= 2;
    case 2:
      i = (x & (uint64_t)0x3) << 4;
      AND_XOR(0);
    }

    // Get result out
#ifdef __x86_64__
    uint64_t res1, res2;
    asm("movd %[acc], %[res1]\n\t"
        "psrldq $8, %[acc]\n\t"
        "movd %[acc], %[res2]\n\t"
        : [res1]"=r"(res1), [res2]"=r"(res2)
        : [acc]"x"(acc));
    return res1 ^ res2;
#else
    return acc[0] ^ acc[1];
#endif

  }
#endif // HAVE_SSE

#ifdef HAVE_INT128
  template<typename T>
  uint64_t RectangularBinaryMatrix::times_128(const T &v) const {
    if(!_columns) return v[0] & cmask();
    typedef unsigned __int128 u128;
    static const u128 smear[4] =
      { (u128)0,
        (((u128)1 << 64) - 1) << 64,
        ((u128)1 << 64) - 1,
        (u128)-1
      };
    u128* p   = (u128*)(_columns + _c - 2);
    u128 res = 0;
    //    u128  res = res ^ res;

    uint64_t j = 0, x = 0;
    for(unsigned int w = 0; w < nb_words(); ++w) {
      x = v[w];
      j = sizeof(uint64_t) * 8;
      if(w == nb_words() - 1) {
        x &= msw();
        j  = nb_msb();
      }
      for( ; j > 7; j -= 8, p -= 4) {
        res ^= smear[x & (uint64_t)0x3] & p[ 0]; x >>= 2;
        res ^= smear[x & (uint64_t)0x3] & p[-1]; x >>= 2;
        res ^= smear[x & (uint64_t)0x3] & p[-2]; x >>= 2;
        res ^= smear[x & (uint64_t)0x3] & p[-3]; x >>= 2;
      }
    }

    switch(j) {
    case 6: res ^= smear[x & (uint64_t)0x3] & *p--; x >>=2;
    case 4: res ^= smear[x & (uint64_t)0x3] & *p--; x >>=2;
    case 2: res ^= smear[x & (uint64_t)0x3] & *p;
    }

    return (res ^ (res >> 64)) & smear[2];
  }
#endif // HAVE_INT128

}

#endif