This file is indexed.

/usr/include/kmer/util/bitPackedArray.H is in libkmer-dev 0~20150903+r2013-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
#ifndef BITPACKEDARRAY_H
#define BITPACKEDARRAY_H

#undef  DEBUG_BPH_ADD
#undef  DEBUG_BPH_GET

////////////////////////////////////////
//
//  bitPackedArray
//
//  implements an integer array using bit-widths less than word-sizes,
//  e.g., a memory efficient way to store 23 bit numbers.  Numbers may
//  be up to 64 bits wide.
//
//  The array is variable length, and it is implemented as an array,
//  not a list or tree -- accessing element 1,000,000 will allocate
//  elements 0 through 999,999.
//
class bitPackedArray {
public:

  //  Create a bitpacked array with elements of width 'width' using
  //  'segmentSize' KB per segment.  If you know your array is going
  //  to be much bigger or smaller, crank this value.
  //
  bitPackedArray(uint32 valueWidth, uint32 segmentSize = 1024);
  ~bitPackedArray();

  //  No array operator is provided, because we cannot return a
  //  reference to a value that is split across two words (or even a
  //  reference to a value that is not bit aligned in the word).
  //
  uint64   get(uint64 idx);
  void     set(uint64 idx, uint64 val);

  //  Clear the array.  Since the array is variable sized, you must add
  //  things to a new array before clearing it.
  void     clear(void);

private:
  uint32   _valueWidth;
  uint32   _segmentSize;
  uint64   _nextElement;  //  the first invalid element
  uint64   _valuesPerSegment;

  uint64   _numSegments;
  uint64   _maxSegments;
  uint64 **_segments;
};


//  An array of bits.  Exactly the same as the bitPackedArray, but
//  optimized for width=1.
//
class bitArray {
public:

  bitArray(uint32 segmentSize = 1024);
  ~bitArray();

  uint64   get(uint64 idx);

  uint64   getAndSet(uint64 idx);

  void     set(uint64 idx);
  void     clr(uint64 idx);

  void     clear(void);

private:
  void     resize(uint64 s);

  uint32   _segmentSize;
  uint64   _valuesPerSegment;

  uint64   _numSegments;
  uint64   _maxSegments;
  uint64 **_segments;
};


//  Uses the bitPackedArray to implement a heap.  The bitPackedArray is dynamically sized,
//  so this can be too.
//
class bitPackedHeap {
public:
  bitPackedHeap(uint32 width, uint64 size=16) {
    _array    = new bitPackedArray(width, size);
    _array->set(0, 0);
    _lastVal  = 0;
  };

  ~bitPackedHeap() {
    delete _array;
  };

  uint64    get(void) {
    uint64  biggestVal = ~uint64ZERO;

    if (_lastVal == 0)
      return(biggestVal);

    biggestVal = _array->get(0);
    _lastVal--;

    if (_lastVal == 0)
      return(biggestVal);

    uint64  t    = _array->get(_lastVal);

    _array->set(0, t);

    uint64  pidx = 0;
    uint64  pval = t;
    uint64  cidx = 1;
    uint64  cval = 0;  //  set below

    while (cidx < _lastVal) {
      //  Set cval here, so we can first test if cidx is in range.
      cval = _array->get(cidx);

      //  Pick the smallest of the two kids
      if (cidx+1 < _lastVal) {
        t = _array->get(cidx+1);
        if (cval > t) {
          cidx++;
          cval = t;
        }
      }

#ifdef DEBUG_BPH_GET
      fprintf(stderr, "test c="uint64FMT" and p="uint64FMT" lastVal="uint64FMT"\n",
              cidx, pidx, _lastVal);
      fprintf(stderr, "test c="uint64FMT"="uint64FMT"\n",
              cidx, cval);
      fprintf(stderr, "test p="uint64FMT"="uint64FMT"\n",
              pidx, pval);
      fprintf(stderr, "test c="uint64FMT"="uint64FMT" and p="uint64FMT"="uint64FMT"\n",
              cidx, cval, pidx, pval);
#endif

      if (cval < pval) {

#ifdef DEBUG_BPH_GET
        fprintf(stderr, "swap c="uint64FMT"="uint64FMT" and p="uint64FMT"="uint64FMT"\n",
                cidx, cval, pidx, pval);
#endif

        //  Swap p and c
        _array->set(pidx, cval);
        _array->set(cidx, pval);

        //  Move down the tree -- pval doesn't change, we moved it into cidx!
        pidx = cidx;
        cidx = cidx * 2 + 1;
      } else {
        cidx = _lastVal;
      }
    }

    return(biggestVal);
  };

  void      add(uint64 value) {
    uint64  cidx = _lastVal;
    uint64  cval = value;
    uint64  pidx = 0;
    uint64  pval = 0;
    bool    more = false;

#ifdef DEBUG_BPH_ADD
    fprintf(stderr, "add  c="uint64FMT"="uint64FMT" -- lastVal="uint64FMT"\n",
            cidx, cval, _lastVal);
#endif

    _array->set(cidx, cval);

    if (cidx > 0)
      more = true;

    while (more) {
      pidx = (cidx-1) / 2;

#ifdef DEBUG_BPH_ADD
      fprintf(stderr, "more c="uint64FMT" and p="uint64FMT"\n", cidx, pidx);
#endif

      pval = _array->get(pidx);

#ifdef DEBUG_BPH_ADD
      fprintf(stderr, "test c="uint64FMT"="uint64FMT" and p="uint64FMT"="uint64FMT"\n",
              cidx, cval, pidx, pval);
#endif

      if (pval > cval) {

#ifdef DEBUG_BPH_ADD
        fprintf(stderr, "swap c="uint64FMT"="uint64FMT" and p="uint64FMT"="uint64FMT"\n",
                cidx, cval, pidx, pval);
#endif

        //  Swap p and c
        _array->set(cidx, pval);
        _array->set(pidx, cval);

        //  Move up the tree -- cval doesn't change, we moved it into pidx!
        cidx = pidx;
      } else {
        more = false;
      }
      if (cidx == 0)
        more = false;
    }

    _lastVal++;

    //dump();
  };

  void      dump(void) {
    for (uint32 i=0; i<_lastVal; i++)
      fprintf(stderr, "HEAP["uint32FMT"]="uint64FMT"\n", i, _array->get(i));
  }

  void      clear(void) {
    _array->clear();
    _lastVal = 0;
  };

private:
  bitPackedArray   *_array;
  uint64            _lastVal;
};



inline
uint64
bitArray::get(uint64 idx) {
  uint64 s = idx / _valuesPerSegment;
  uint64 p = idx % _valuesPerSegment;

  uint64 wrd = (p >> 6) & 0x0000cfffffffffffllu;
  uint64 bit = (p     ) & 0x000000000000003fllu;

  return((_segments[s][wrd] >> bit) & 0x0000000000000001llu);
}


inline
void
bitArray::resize(uint64 s) {

  if (s < _numSegments)
    return;

  if (s > _maxSegments) {
    _maxSegments = s + 16;
    uint64 **S = new uint64 * [_maxSegments];
    for (uint32 i=0; i<_numSegments; i++)
      S[i] = _segments[i];
    delete [] _segments;
    _segments = S;
  }

  while (_numSegments <= s)
    _segments[_numSegments++] = new uint64 [_segmentSize * 1024 / 8];
}


inline
uint64
bitArray::getAndSet(uint64 idx) {
  uint64 s = idx / _valuesPerSegment;
  uint64 p = idx % _valuesPerSegment;

  uint64 wrd = (p >> 6) & 0x0000cfffffffffffllu;
  uint64 bit = (p     ) & 0x000000000000003fllu;

  uint64 ret = (_segments[s][wrd] >> bit) & 0x0000000000000001llu;
  
  _segments[s][wrd] |= uint64ONE << bit;

  return(ret);
}


inline
void
bitArray::set(uint64 idx) {
  uint64 s = idx / _valuesPerSegment;
  uint64 p = idx % _valuesPerSegment;

  resize(s);

  uint64 wrd = (p >> 6) & 0x0000cfffffffffffllu;
  uint64 bit = (p     ) & 0x000000000000003fllu;

  _segments[s][wrd] |= uint64ONE << bit;
}


inline
void
bitArray::clr(uint64 idx) {
  uint64 s = idx / _valuesPerSegment;
  uint64 p = idx % _valuesPerSegment;

  resize(s);

  uint64 wrd = (p >> 6) & 0x0000cfffffffffffllu;
  uint64 bit = (p     ) & 0x000000000000003fllu;

  _segments[s][wrd] &= ~(0x0000000000000001llu << bit);
}


#endif  // BITPACKEDARRAY_H