This file is indexed.

/usr/include/lemon/bucket_heap.h is in liblemon-dev 1.3.1+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
/* -*- mode: C++; indent-tabs-mode: nil; -*-
 *
 * This file is a part of LEMON, a generic C++ optimization library.
 *
 * Copyright (C) 2003-2010
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
 *
 * Permission to use, modify and distribute this software is granted
 * provided that this copyright notice appears in all copies. For
 * precise terms see the accompanying LICENSE file.
 *
 * This software is provided "AS IS" with no warranty of any kind,
 * express or implied, and with no claim as to its suitability for any
 * purpose.
 *
 */

#ifndef LEMON_BUCKET_HEAP_H
#define LEMON_BUCKET_HEAP_H

///\ingroup heaps
///\file
///\brief Bucket heap implementation.

#include <vector>
#include <utility>
#include <functional>

namespace lemon {

  namespace _bucket_heap_bits {

    template <bool MIN>
    struct DirectionTraits {
      static bool less(int left, int right) {
        return left < right;
      }
      static void increase(int& value) {
        ++value;
      }
    };

    template <>
    struct DirectionTraits<false> {
      static bool less(int left, int right) {
        return left > right;
      }
      static void increase(int& value) {
        --value;
      }
    };

  }

  /// \ingroup heaps
  ///
  /// \brief Bucket heap data structure.
  ///
  /// This class implements the \e bucket \e heap data structure.
  /// It practically conforms to the \ref concepts::Heap "heap concept",
  /// but it has some limitations.
  ///
  /// The bucket heap is a very simple structure. It can store only
  /// \c int priorities and it maintains a list of items for each priority
  /// in the range <tt>[0..C)</tt>. So it should only be used when the
  /// priorities are small. It is not intended to use as a Dijkstra heap.
  ///
  /// \tparam IM A read-writable item map with \c int values, used
  /// internally to handle the cross references.
  /// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap.
  /// The default is \e min-heap. If this parameter is set to \c false,
  /// then the comparison is reversed, so the top(), prio() and pop()
  /// functions deal with the item having maximum priority instead of the
  /// minimum.
  ///
  /// \sa SimpleBucketHeap
  template <typename IM, bool MIN = true>
  class BucketHeap {

  public:

    /// Type of the item-int map.
    typedef IM ItemIntMap;
    /// Type of the priorities.
    typedef int Prio;
    /// Type of the items stored in the heap.
    typedef typename ItemIntMap::Key Item;
    /// Type of the item-priority pairs.
    typedef std::pair<Item,Prio> Pair;

  private:

    typedef _bucket_heap_bits::DirectionTraits<MIN> Direction;

  public:

    /// \brief Type to represent the states of the items.
    ///
    /// Each item has a state associated to it. It can be "in heap",
    /// "pre-heap" or "post-heap". The latter two are indifferent from the
    /// heap's point of view, but may be useful to the user.
    ///
    /// The item-int map must be initialized in such way that it assigns
    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
    enum State {
      IN_HEAP = 0,    ///< = 0.
      PRE_HEAP = -1,  ///< = -1.
      POST_HEAP = -2  ///< = -2.
    };

  public:

    /// \brief Constructor.
    ///
    /// Constructor.
    /// \param map A map that assigns \c int values to the items.
    /// It is used internally to handle the cross references.
    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
    explicit BucketHeap(ItemIntMap &map) : _iim(map), _minimum(0) {}

    /// \brief The number of items stored in the heap.
    ///
    /// This function returns the number of items stored in the heap.
    int size() const { return _data.size(); }

    /// \brief Check if the heap is empty.
    ///
    /// This function returns \c true if the heap is empty.
    bool empty() const { return _data.empty(); }

    /// \brief Make the heap empty.
    ///
    /// This functon makes the heap empty.
    /// It does not change the cross reference map. If you want to reuse
    /// a heap that is not surely empty, you should first clear it and
    /// then you should set the cross reference map to \c PRE_HEAP
    /// for each item.
    void clear() {
      _data.clear(); _first.clear(); _minimum = 0;
    }

  private:

    void relocateLast(int idx) {
      if (idx + 1 < int(_data.size())) {
        _data[idx] = _data.back();
        if (_data[idx].prev != -1) {
          _data[_data[idx].prev].next = idx;
        } else {
          _first[_data[idx].value] = idx;
        }
        if (_data[idx].next != -1) {
          _data[_data[idx].next].prev = idx;
        }
        _iim[_data[idx].item] = idx;
      }
      _data.pop_back();
    }

    void unlace(int idx) {
      if (_data[idx].prev != -1) {
        _data[_data[idx].prev].next = _data[idx].next;
      } else {
        _first[_data[idx].value] = _data[idx].next;
      }
      if (_data[idx].next != -1) {
        _data[_data[idx].next].prev = _data[idx].prev;
      }
    }

    void lace(int idx) {
      if (int(_first.size()) <= _data[idx].value) {
        _first.resize(_data[idx].value + 1, -1);
      }
      _data[idx].next = _first[_data[idx].value];
      if (_data[idx].next != -1) {
        _data[_data[idx].next].prev = idx;
      }
      _first[_data[idx].value] = idx;
      _data[idx].prev = -1;
    }

  public:

    /// \brief Insert a pair of item and priority into the heap.
    ///
    /// This function inserts \c p.first to the heap with priority
    /// \c p.second.
    /// \param p The pair to insert.
    /// \pre \c p.first must not be stored in the heap.
    void push(const Pair& p) {
      push(p.first, p.second);
    }

    /// \brief Insert an item into the heap with the given priority.
    ///
    /// This function inserts the given item into the heap with the
    /// given priority.
    /// \param i The item to insert.
    /// \param p The priority of the item.
    /// \pre \e i must not be stored in the heap.
    void push(const Item &i, const Prio &p) {
      int idx = _data.size();
      _iim[i] = idx;
      _data.push_back(BucketItem(i, p));
      lace(idx);
      if (Direction::less(p, _minimum)) {
        _minimum = p;
      }
    }

    /// \brief Return the item having minimum priority.
    ///
    /// This function returns the item having minimum priority.
    /// \pre The heap must be non-empty.
    Item top() const {
      while (_first[_minimum] == -1) {
        Direction::increase(_minimum);
      }
      return _data[_first[_minimum]].item;
    }

    /// \brief The minimum priority.
    ///
    /// This function returns the minimum priority.
    /// \pre The heap must be non-empty.
    Prio prio() const {
      while (_first[_minimum] == -1) {
        Direction::increase(_minimum);
      }
      return _minimum;
    }

    /// \brief Remove the item having minimum priority.
    ///
    /// This function removes the item having minimum priority.
    /// \pre The heap must be non-empty.
    void pop() {
      while (_first[_minimum] == -1) {
        Direction::increase(_minimum);
      }
      int idx = _first[_minimum];
      _iim[_data[idx].item] = -2;
      unlace(idx);
      relocateLast(idx);
    }

    /// \brief Remove the given item from the heap.
    ///
    /// This function removes the given item from the heap if it is
    /// already stored.
    /// \param i The item to delete.
    /// \pre \e i must be in the heap.
    void erase(const Item &i) {
      int idx = _iim[i];
      _iim[_data[idx].item] = -2;
      unlace(idx);
      relocateLast(idx);
    }

    /// \brief The priority of the given item.
    ///
    /// This function returns the priority of the given item.
    /// \param i The item.
    /// \pre \e i must be in the heap.
    Prio operator[](const Item &i) const {
      int idx = _iim[i];
      return _data[idx].value;
    }

    /// \brief Set the priority of an item or insert it, if it is
    /// not stored in the heap.
    ///
    /// This method sets the priority of the given item if it is
    /// already stored in the heap. Otherwise it inserts the given
    /// item into the heap with the given priority.
    /// \param i The item.
    /// \param p The priority.
    void set(const Item &i, const Prio &p) {
      int idx = _iim[i];
      if (idx < 0) {
        push(i, p);
      } else if (Direction::less(p, _data[idx].value)) {
        decrease(i, p);
      } else {
        increase(i, p);
      }
    }

    /// \brief Decrease the priority of an item to the given value.
    ///
    /// This function decreases the priority of an item to the given value.
    /// \param i The item.
    /// \param p The priority.
    /// \pre \e i must be stored in the heap with priority at least \e p.
    void decrease(const Item &i, const Prio &p) {
      int idx = _iim[i];
      unlace(idx);
      _data[idx].value = p;
      if (Direction::less(p, _minimum)) {
        _minimum = p;
      }
      lace(idx);
    }

    /// \brief Increase the priority of an item to the given value.
    ///
    /// This function increases the priority of an item to the given value.
    /// \param i The item.
    /// \param p The priority.
    /// \pre \e i must be stored in the heap with priority at most \e p.
    void increase(const Item &i, const Prio &p) {
      int idx = _iim[i];
      unlace(idx);
      _data[idx].value = p;
      lace(idx);
    }

    /// \brief Return the state of an item.
    ///
    /// This method returns \c PRE_HEAP if the given item has never
    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
    /// and \c POST_HEAP otherwise.
    /// In the latter case it is possible that the item will get back
    /// to the heap again.
    /// \param i The item.
    State state(const Item &i) const {
      int idx = _iim[i];
      if (idx >= 0) idx = 0;
      return State(idx);
    }

    /// \brief Set the state of an item in the heap.
    ///
    /// This function sets the state of the given item in the heap.
    /// It can be used to manually clear the heap when it is important
    /// to achive better time complexity.
    /// \param i The item.
    /// \param st The state. It should not be \c IN_HEAP.
    void state(const Item& i, State st) {
      switch (st) {
      case POST_HEAP:
      case PRE_HEAP:
        if (state(i) == IN_HEAP) {
          erase(i);
        }
        _iim[i] = st;
        break;
      case IN_HEAP:
        break;
      }
    }

  private:

    struct BucketItem {
      BucketItem(const Item& _item, int _value)
        : item(_item), value(_value) {}

      Item item;
      int value;

      int prev, next;
    };

    ItemIntMap& _iim;
    std::vector<int> _first;
    std::vector<BucketItem> _data;
    mutable int _minimum;

  }; // class BucketHeap

  /// \ingroup heaps
  ///
  /// \brief Simplified bucket heap data structure.
  ///
  /// This class implements a simplified \e bucket \e heap data
  /// structure. It does not provide some functionality, but it is
  /// faster and simpler than BucketHeap. The main difference is
  /// that BucketHeap stores a doubly-linked list for each key while
  /// this class stores only simply-linked lists. It supports erasing
  /// only for the item having minimum priority and it does not support
  /// key increasing and decreasing.
  ///
  /// Note that this implementation does not conform to the
  /// \ref concepts::Heap "heap concept" due to the lack of some
  /// functionality.
  ///
  /// \tparam IM A read-writable item map with \c int values, used
  /// internally to handle the cross references.
  /// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap.
  /// The default is \e min-heap. If this parameter is set to \c false,
  /// then the comparison is reversed, so the top(), prio() and pop()
  /// functions deal with the item having maximum priority instead of the
  /// minimum.
  ///
  /// \sa BucketHeap
  template <typename IM, bool MIN = true >
  class SimpleBucketHeap {

  public:

    /// Type of the item-int map.
    typedef IM ItemIntMap;
    /// Type of the priorities.
    typedef int Prio;
    /// Type of the items stored in the heap.
    typedef typename ItemIntMap::Key Item;
    /// Type of the item-priority pairs.
    typedef std::pair<Item,Prio> Pair;

  private:

    typedef _bucket_heap_bits::DirectionTraits<MIN> Direction;

  public:

    /// \brief Type to represent the states of the items.
    ///
    /// Each item has a state associated to it. It can be "in heap",
    /// "pre-heap" or "post-heap". The latter two are indifferent from the
    /// heap's point of view, but may be useful to the user.
    ///
    /// The item-int map must be initialized in such way that it assigns
    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
    enum State {
      IN_HEAP = 0,    ///< = 0.
      PRE_HEAP = -1,  ///< = -1.
      POST_HEAP = -2  ///< = -2.
    };

  public:

    /// \brief Constructor.
    ///
    /// Constructor.
    /// \param map A map that assigns \c int values to the items.
    /// It is used internally to handle the cross references.
    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
    explicit SimpleBucketHeap(ItemIntMap &map)
      : _iim(map), _free(-1), _num(0), _minimum(0) {}

    /// \brief The number of items stored in the heap.
    ///
    /// This function returns the number of items stored in the heap.
    int size() const { return _num; }

    /// \brief Check if the heap is empty.
    ///
    /// This function returns \c true if the heap is empty.
    bool empty() const { return _num == 0; }

    /// \brief Make the heap empty.
    ///
    /// This functon makes the heap empty.
    /// It does not change the cross reference map. If you want to reuse
    /// a heap that is not surely empty, you should first clear it and
    /// then you should set the cross reference map to \c PRE_HEAP
    /// for each item.
    void clear() {
      _data.clear(); _first.clear(); _free = -1; _num = 0; _minimum = 0;
    }

    /// \brief Insert a pair of item and priority into the heap.
    ///
    /// This function inserts \c p.first to the heap with priority
    /// \c p.second.
    /// \param p The pair to insert.
    /// \pre \c p.first must not be stored in the heap.
    void push(const Pair& p) {
      push(p.first, p.second);
    }

    /// \brief Insert an item into the heap with the given priority.
    ///
    /// This function inserts the given item into the heap with the
    /// given priority.
    /// \param i The item to insert.
    /// \param p The priority of the item.
    /// \pre \e i must not be stored in the heap.
    void push(const Item &i, const Prio &p) {
      int idx;
      if (_free == -1) {
        idx = _data.size();
        _data.push_back(BucketItem(i));
      } else {
        idx = _free;
        _free = _data[idx].next;
        _data[idx].item = i;
      }
      _iim[i] = idx;
      if (p >= int(_first.size())) _first.resize(p + 1, -1);
      _data[idx].next = _first[p];
      _first[p] = idx;
      if (Direction::less(p, _minimum)) {
        _minimum = p;
      }
      ++_num;
    }

    /// \brief Return the item having minimum priority.
    ///
    /// This function returns the item having minimum priority.
    /// \pre The heap must be non-empty.
    Item top() const {
      while (_first[_minimum] == -1) {
        Direction::increase(_minimum);
      }
      return _data[_first[_minimum]].item;
    }

    /// \brief The minimum priority.
    ///
    /// This function returns the minimum priority.
    /// \pre The heap must be non-empty.
    Prio prio() const {
      while (_first[_minimum] == -1) {
        Direction::increase(_minimum);
      }
      return _minimum;
    }

    /// \brief Remove the item having minimum priority.
    ///
    /// This function removes the item having minimum priority.
    /// \pre The heap must be non-empty.
    void pop() {
      while (_first[_minimum] == -1) {
        Direction::increase(_minimum);
      }
      int idx = _first[_minimum];
      _iim[_data[idx].item] = -2;
      _first[_minimum] = _data[idx].next;
      _data[idx].next = _free;
      _free = idx;
      --_num;
    }

    /// \brief The priority of the given item.
    ///
    /// This function returns the priority of the given item.
    /// \param i The item.
    /// \pre \e i must be in the heap.
    /// \warning This operator is not a constant time function because
    /// it scans the whole data structure to find the proper value.
    Prio operator[](const Item &i) const {
      for (int k = 0; k < int(_first.size()); ++k) {
        int idx = _first[k];
        while (idx != -1) {
          if (_data[idx].item == i) {
            return k;
          }
          idx = _data[idx].next;
        }
      }
      return -1;
    }

    /// \brief Return the state of an item.
    ///
    /// This method returns \c PRE_HEAP if the given item has never
    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
    /// and \c POST_HEAP otherwise.
    /// In the latter case it is possible that the item will get back
    /// to the heap again.
    /// \param i The item.
    State state(const Item &i) const {
      int idx = _iim[i];
      if (idx >= 0) idx = 0;
      return State(idx);
    }

  private:

    struct BucketItem {
      BucketItem(const Item& _item)
        : item(_item) {}

      Item item;
      int next;
    };

    ItemIntMap& _iim;
    std::vector<int> _first;
    std::vector<BucketItem> _data;
    int _free, _num;
    mutable int _minimum;

  }; // class SimpleBucketHeap

}

#endif