This file is indexed.

/usr/include/lemon/cost_scaling.h is in liblemon-dev 1.3.1+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
/* -*- mode: C++; indent-tabs-mode: nil; -*-
 *
 * This file is a part of LEMON, a generic C++ optimization library.
 *
 * Copyright (C) 2003-2013
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
 *
 * Permission to use, modify and distribute this software is granted
 * provided that this copyright notice appears in all copies. For
 * precise terms see the accompanying LICENSE file.
 *
 * This software is provided "AS IS" with no warranty of any kind,
 * express or implied, and with no claim as to its suitability for any
 * purpose.
 *
 */

#ifndef LEMON_COST_SCALING_H
#define LEMON_COST_SCALING_H

/// \ingroup min_cost_flow_algs
/// \file
/// \brief Cost scaling algorithm for finding a minimum cost flow.

#include <vector>
#include <deque>
#include <limits>

#include <lemon/core.h>
#include <lemon/maps.h>
#include <lemon/math.h>
#include <lemon/static_graph.h>
#include <lemon/circulation.h>
#include <lemon/bellman_ford.h>

namespace lemon {

  /// \brief Default traits class of CostScaling algorithm.
  ///
  /// Default traits class of CostScaling algorithm.
  /// \tparam GR Digraph type.
  /// \tparam V The number type used for flow amounts, capacity bounds
  /// and supply values. By default it is \c int.
  /// \tparam C The number type used for costs and potentials.
  /// By default it is the same as \c V.
#ifdef DOXYGEN
  template <typename GR, typename V = int, typename C = V>
#else
  template < typename GR, typename V = int, typename C = V,
             bool integer = std::numeric_limits<C>::is_integer >
#endif
  struct CostScalingDefaultTraits
  {
    /// The type of the digraph
    typedef GR Digraph;
    /// The type of the flow amounts, capacity bounds and supply values
    typedef V Value;
    /// The type of the arc costs
    typedef C Cost;

    /// \brief The large cost type used for internal computations
    ///
    /// The large cost type used for internal computations.
    /// It is \c long \c long if the \c Cost type is integer,
    /// otherwise it is \c double.
    /// \c Cost must be convertible to \c LargeCost.
    typedef double LargeCost;
  };

  // Default traits class for integer cost types
  template <typename GR, typename V, typename C>
  struct CostScalingDefaultTraits<GR, V, C, true>
  {
    typedef GR Digraph;
    typedef V Value;
    typedef C Cost;
#ifdef LEMON_HAVE_LONG_LONG
    typedef long long LargeCost;
#else
    typedef long LargeCost;
#endif
  };


  /// \addtogroup min_cost_flow_algs
  /// @{

  /// \brief Implementation of the Cost Scaling algorithm for
  /// finding a \ref min_cost_flow "minimum cost flow".
  ///
  /// \ref CostScaling implements a cost scaling algorithm that performs
  /// push/augment and relabel operations for finding a \ref min_cost_flow
  /// "minimum cost flow" \cite amo93networkflows,
  /// \cite goldberg90approximation,
  /// \cite goldberg97efficient, \cite bunnagel98efficient.
  /// It is a highly efficient primal-dual solution method, which
  /// can be viewed as the generalization of the \ref Preflow
  /// "preflow push-relabel" algorithm for the maximum flow problem.
  /// It is a polynomial algorithm, its running time complexity is
  /// \f$O(n^2m\log(nK))\f$, where <i>K</i> denotes the maximum arc cost.
  ///
  /// In general, \ref NetworkSimplex and \ref CostScaling are the fastest
  /// implementations available in LEMON for solving this problem.
  /// (For more information, see \ref min_cost_flow_algs "the module page".)
  ///
  /// Most of the parameters of the problem (except for the digraph)
  /// can be given using separate functions, and the algorithm can be
  /// executed using the \ref run() function. If some parameters are not
  /// specified, then default values will be used.
  ///
  /// \tparam GR The digraph type the algorithm runs on.
  /// \tparam V The number type used for flow amounts, capacity bounds
  /// and supply values in the algorithm. By default, it is \c int.
  /// \tparam C The number type used for costs and potentials in the
  /// algorithm. By default, it is the same as \c V.
  /// \tparam TR The traits class that defines various types used by the
  /// algorithm. By default, it is \ref CostScalingDefaultTraits
  /// "CostScalingDefaultTraits<GR, V, C>".
  /// In most cases, this parameter should not be set directly,
  /// consider to use the named template parameters instead.
  ///
  /// \warning Both \c V and \c C must be signed number types.
  /// \warning All input data (capacities, supply values, and costs) must
  /// be integer.
  /// \warning This algorithm does not support negative costs for
  /// arcs having infinite upper bound.
  ///
  /// \note %CostScaling provides three different internal methods,
  /// from which the most efficient one is used by default.
  /// For more information, see \ref Method.
#ifdef DOXYGEN
  template <typename GR, typename V, typename C, typename TR>
#else
  template < typename GR, typename V = int, typename C = V,
             typename TR = CostScalingDefaultTraits<GR, V, C> >
#endif
  class CostScaling
  {
  public:

    /// The type of the digraph
    typedef typename TR::Digraph Digraph;
    /// The type of the flow amounts, capacity bounds and supply values
    typedef typename TR::Value Value;
    /// The type of the arc costs
    typedef typename TR::Cost Cost;

    /// \brief The large cost type
    ///
    /// The large cost type used for internal computations.
    /// By default, it is \c long \c long if the \c Cost type is integer,
    /// otherwise it is \c double.
    typedef typename TR::LargeCost LargeCost;

    /// \brief The \ref lemon::CostScalingDefaultTraits "traits class"
    /// of the algorithm
    typedef TR Traits;

  public:

    /// \brief Problem type constants for the \c run() function.
    ///
    /// Enum type containing the problem type constants that can be
    /// returned by the \ref run() function of the algorithm.
    enum ProblemType {
      /// The problem has no feasible solution (flow).
      INFEASIBLE,
      /// The problem has optimal solution (i.e. it is feasible and
      /// bounded), and the algorithm has found optimal flow and node
      /// potentials (primal and dual solutions).
      OPTIMAL,
      /// The digraph contains an arc of negative cost and infinite
      /// upper bound. It means that the objective function is unbounded
      /// on that arc, however, note that it could actually be bounded
      /// over the feasible flows, but this algroithm cannot handle
      /// these cases.
      UNBOUNDED
    };

    /// \brief Constants for selecting the internal method.
    ///
    /// Enum type containing constants for selecting the internal method
    /// for the \ref run() function.
    ///
    /// \ref CostScaling provides three internal methods that differ mainly
    /// in their base operations, which are used in conjunction with the
    /// relabel operation.
    /// By default, the so called \ref PARTIAL_AUGMENT
    /// "Partial Augment-Relabel" method is used, which turned out to be
    /// the most efficient and the most robust on various test inputs.
    /// However, the other methods can be selected using the \ref run()
    /// function with the proper parameter.
    enum Method {
      /// Local push operations are used, i.e. flow is moved only on one
      /// admissible arc at once.
      PUSH,
      /// Augment operations are used, i.e. flow is moved on admissible
      /// paths from a node with excess to a node with deficit.
      AUGMENT,
      /// Partial augment operations are used, i.e. flow is moved on
      /// admissible paths started from a node with excess, but the
      /// lengths of these paths are limited. This method can be viewed
      /// as a combined version of the previous two operations.
      PARTIAL_AUGMENT
    };

  private:

    TEMPLATE_DIGRAPH_TYPEDEFS(GR);

    typedef std::vector<int> IntVector;
    typedef std::vector<Value> ValueVector;
    typedef std::vector<Cost> CostVector;
    typedef std::vector<LargeCost> LargeCostVector;
    typedef std::vector<char> BoolVector;
    // Note: vector<char> is used instead of vector<bool>
    // for efficiency reasons

  private:

    template <typename KT, typename VT>
    class StaticVectorMap {
    public:
      typedef KT Key;
      typedef VT Value;

      StaticVectorMap(std::vector<Value>& v) : _v(v) {}

      const Value& operator[](const Key& key) const {
        return _v[StaticDigraph::id(key)];
      }

      Value& operator[](const Key& key) {
        return _v[StaticDigraph::id(key)];
      }

      void set(const Key& key, const Value& val) {
        _v[StaticDigraph::id(key)] = val;
      }

    private:
      std::vector<Value>& _v;
    };

    typedef StaticVectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap;

  private:

    // Data related to the underlying digraph
    const GR &_graph;
    int _node_num;
    int _arc_num;
    int _res_node_num;
    int _res_arc_num;
    int _root;

    // Parameters of the problem
    bool _has_lower;
    Value _sum_supply;
    int _sup_node_num;

    // Data structures for storing the digraph
    IntNodeMap _node_id;
    IntArcMap _arc_idf;
    IntArcMap _arc_idb;
    IntVector _first_out;
    BoolVector _forward;
    IntVector _source;
    IntVector _target;
    IntVector _reverse;

    // Node and arc data
    ValueVector _lower;
    ValueVector _upper;
    CostVector _scost;
    ValueVector _supply;

    ValueVector _res_cap;
    LargeCostVector _cost;
    LargeCostVector _pi;
    ValueVector _excess;
    IntVector _next_out;
    std::deque<int> _active_nodes;

    // Data for scaling
    LargeCost _epsilon;
    int _alpha;

    IntVector _buckets;
    IntVector _bucket_next;
    IntVector _bucket_prev;
    IntVector _rank;
    int _max_rank;

  public:

    /// \brief Constant for infinite upper bounds (capacities).
    ///
    /// Constant for infinite upper bounds (capacities).
    /// It is \c std::numeric_limits<Value>::infinity() if available,
    /// \c std::numeric_limits<Value>::max() otherwise.
    const Value INF;

  public:

    /// \name Named Template Parameters
    /// @{

    template <typename T>
    struct SetLargeCostTraits : public Traits {
      typedef T LargeCost;
    };

    /// \brief \ref named-templ-param "Named parameter" for setting
    /// \c LargeCost type.
    ///
    /// \ref named-templ-param "Named parameter" for setting \c LargeCost
    /// type, which is used for internal computations in the algorithm.
    /// \c Cost must be convertible to \c LargeCost.
    template <typename T>
    struct SetLargeCost
      : public CostScaling<GR, V, C, SetLargeCostTraits<T> > {
      typedef  CostScaling<GR, V, C, SetLargeCostTraits<T> > Create;
    };

    /// @}

  protected:

    CostScaling() {}

  public:

    /// \brief Constructor.
    ///
    /// The constructor of the class.
    ///
    /// \param graph The digraph the algorithm runs on.
    CostScaling(const GR& graph) :
      _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
      INF(std::numeric_limits<Value>::has_infinity ?
          std::numeric_limits<Value>::infinity() :
          std::numeric_limits<Value>::max())
    {
      // Check the number types
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
        "The flow type of CostScaling must be signed");
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
        "The cost type of CostScaling must be signed");

      // Reset data structures
      reset();
    }

    /// \name Parameters
    /// The parameters of the algorithm can be specified using these
    /// functions.

    /// @{

    /// \brief Set the lower bounds on the arcs.
    ///
    /// This function sets the lower bounds on the arcs.
    /// If it is not used before calling \ref run(), the lower bounds
    /// will be set to zero on all arcs.
    ///
    /// \param map An arc map storing the lower bounds.
    /// Its \c Value type must be convertible to the \c Value type
    /// of the algorithm.
    ///
    /// \return <tt>(*this)</tt>
    template <typename LowerMap>
    CostScaling& lowerMap(const LowerMap& map) {
      _has_lower = true;
      for (ArcIt a(_graph); a != INVALID; ++a) {
        _lower[_arc_idf[a]] = map[a];
      }
      return *this;
    }

    /// \brief Set the upper bounds (capacities) on the arcs.
    ///
    /// This function sets the upper bounds (capacities) on the arcs.
    /// If it is not used before calling \ref run(), the upper bounds
    /// will be set to \ref INF on all arcs (i.e. the flow value will be
    /// unbounded from above).
    ///
    /// \param map An arc map storing the upper bounds.
    /// Its \c Value type must be convertible to the \c Value type
    /// of the algorithm.
    ///
    /// \return <tt>(*this)</tt>
    template<typename UpperMap>
    CostScaling& upperMap(const UpperMap& map) {
      for (ArcIt a(_graph); a != INVALID; ++a) {
        _upper[_arc_idf[a]] = map[a];
      }
      return *this;
    }

    /// \brief Set the costs of the arcs.
    ///
    /// This function sets the costs of the arcs.
    /// If it is not used before calling \ref run(), the costs
    /// will be set to \c 1 on all arcs.
    ///
    /// \param map An arc map storing the costs.
    /// Its \c Value type must be convertible to the \c Cost type
    /// of the algorithm.
    ///
    /// \return <tt>(*this)</tt>
    template<typename CostMap>
    CostScaling& costMap(const CostMap& map) {
      for (ArcIt a(_graph); a != INVALID; ++a) {
        _scost[_arc_idf[a]] =  map[a];
        _scost[_arc_idb[a]] = -map[a];
      }
      return *this;
    }

    /// \brief Set the supply values of the nodes.
    ///
    /// This function sets the supply values of the nodes.
    /// If neither this function nor \ref stSupply() is used before
    /// calling \ref run(), the supply of each node will be set to zero.
    ///
    /// \param map A node map storing the supply values.
    /// Its \c Value type must be convertible to the \c Value type
    /// of the algorithm.
    ///
    /// \return <tt>(*this)</tt>
    template<typename SupplyMap>
    CostScaling& supplyMap(const SupplyMap& map) {
      for (NodeIt n(_graph); n != INVALID; ++n) {
        _supply[_node_id[n]] = map[n];
      }
      return *this;
    }

    /// \brief Set single source and target nodes and a supply value.
    ///
    /// This function sets a single source node and a single target node
    /// and the required flow value.
    /// If neither this function nor \ref supplyMap() is used before
    /// calling \ref run(), the supply of each node will be set to zero.
    ///
    /// Using this function has the same effect as using \ref supplyMap()
    /// with a map in which \c k is assigned to \c s, \c -k is
    /// assigned to \c t and all other nodes have zero supply value.
    ///
    /// \param s The source node.
    /// \param t The target node.
    /// \param k The required amount of flow from node \c s to node \c t
    /// (i.e. the supply of \c s and the demand of \c t).
    ///
    /// \return <tt>(*this)</tt>
    CostScaling& stSupply(const Node& s, const Node& t, Value k) {
      for (int i = 0; i != _res_node_num; ++i) {
        _supply[i] = 0;
      }
      _supply[_node_id[s]] =  k;
      _supply[_node_id[t]] = -k;
      return *this;
    }

    /// @}

    /// \name Execution control
    /// The algorithm can be executed using \ref run().

    /// @{

    /// \brief Run the algorithm.
    ///
    /// This function runs the algorithm.
    /// The paramters can be specified using functions \ref lowerMap(),
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
    /// For example,
    /// \code
    ///   CostScaling<ListDigraph> cs(graph);
    ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
    ///     .supplyMap(sup).run();
    /// \endcode
    ///
    /// This function can be called more than once. All the given parameters
    /// are kept for the next call, unless \ref resetParams() or \ref reset()
    /// is used, thus only the modified parameters have to be set again.
    /// If the underlying digraph was also modified after the construction
    /// of the class (or the last \ref reset() call), then the \ref reset()
    /// function must be called.
    ///
    /// \param method The internal method that will be used in the
    /// algorithm. For more information, see \ref Method.
    /// \param factor The cost scaling factor. It must be at least two.
    ///
    /// \return \c INFEASIBLE if no feasible flow exists,
    /// \n \c OPTIMAL if the problem has optimal solution
    /// (i.e. it is feasible and bounded), and the algorithm has found
    /// optimal flow and node potentials (primal and dual solutions),
    /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
    /// and infinite upper bound. It means that the objective function
    /// is unbounded on that arc, however, note that it could actually be
    /// bounded over the feasible flows, but this algroithm cannot handle
    /// these cases.
    ///
    /// \see ProblemType, Method
    /// \see resetParams(), reset()
    ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 16) {
      LEMON_ASSERT(factor >= 2, "The scaling factor must be at least 2");
      _alpha = factor;
      ProblemType pt = init();
      if (pt != OPTIMAL) return pt;
      start(method);
      return OPTIMAL;
    }

    /// \brief Reset all the parameters that have been given before.
    ///
    /// This function resets all the paramaters that have been given
    /// before using functions \ref lowerMap(), \ref upperMap(),
    /// \ref costMap(), \ref supplyMap(), \ref stSupply().
    ///
    /// It is useful for multiple \ref run() calls. Basically, all the given
    /// parameters are kept for the next \ref run() call, unless
    /// \ref resetParams() or \ref reset() is used.
    /// If the underlying digraph was also modified after the construction
    /// of the class or the last \ref reset() call, then the \ref reset()
    /// function must be used, otherwise \ref resetParams() is sufficient.
    ///
    /// For example,
    /// \code
    ///   CostScaling<ListDigraph> cs(graph);
    ///
    ///   // First run
    ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
    ///     .supplyMap(sup).run();
    ///
    ///   // Run again with modified cost map (resetParams() is not called,
    ///   // so only the cost map have to be set again)
    ///   cost[e] += 100;
    ///   cs.costMap(cost).run();
    ///
    ///   // Run again from scratch using resetParams()
    ///   // (the lower bounds will be set to zero on all arcs)
    ///   cs.resetParams();
    ///   cs.upperMap(capacity).costMap(cost)
    ///     .supplyMap(sup).run();
    /// \endcode
    ///
    /// \return <tt>(*this)</tt>
    ///
    /// \see reset(), run()
    CostScaling& resetParams() {
      for (int i = 0; i != _res_node_num; ++i) {
        _supply[i] = 0;
      }
      int limit = _first_out[_root];
      for (int j = 0; j != limit; ++j) {
        _lower[j] = 0;
        _upper[j] = INF;
        _scost[j] = _forward[j] ? 1 : -1;
      }
      for (int j = limit; j != _res_arc_num; ++j) {
        _lower[j] = 0;
        _upper[j] = INF;
        _scost[j] = 0;
        _scost[_reverse[j]] = 0;
      }
      _has_lower = false;
      return *this;
    }

    /// \brief Reset the internal data structures and all the parameters
    /// that have been given before.
    ///
    /// This function resets the internal data structures and all the
    /// paramaters that have been given before using functions \ref lowerMap(),
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
    ///
    /// It is useful for multiple \ref run() calls. By default, all the given
    /// parameters are kept for the next \ref run() call, unless
    /// \ref resetParams() or \ref reset() is used.
    /// If the underlying digraph was also modified after the construction
    /// of the class or the last \ref reset() call, then the \ref reset()
    /// function must be used, otherwise \ref resetParams() is sufficient.
    ///
    /// See \ref resetParams() for examples.
    ///
    /// \return <tt>(*this)</tt>
    ///
    /// \see resetParams(), run()
    CostScaling& reset() {
      // Resize vectors
      _node_num = countNodes(_graph);
      _arc_num = countArcs(_graph);
      _res_node_num = _node_num + 1;
      _res_arc_num = 2 * (_arc_num + _node_num);
      _root = _node_num;

      _first_out.resize(_res_node_num + 1);
      _forward.resize(_res_arc_num);
      _source.resize(_res_arc_num);
      _target.resize(_res_arc_num);
      _reverse.resize(_res_arc_num);

      _lower.resize(_res_arc_num);
      _upper.resize(_res_arc_num);
      _scost.resize(_res_arc_num);
      _supply.resize(_res_node_num);

      _res_cap.resize(_res_arc_num);
      _cost.resize(_res_arc_num);
      _pi.resize(_res_node_num);
      _excess.resize(_res_node_num);
      _next_out.resize(_res_node_num);

      // Copy the graph
      int i = 0, j = 0, k = 2 * _arc_num + _node_num;
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
        _node_id[n] = i;
      }
      i = 0;
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
        _first_out[i] = j;
        for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
          _arc_idf[a] = j;
          _forward[j] = true;
          _source[j] = i;
          _target[j] = _node_id[_graph.runningNode(a)];
        }
        for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
          _arc_idb[a] = j;
          _forward[j] = false;
          _source[j] = i;
          _target[j] = _node_id[_graph.runningNode(a)];
        }
        _forward[j] = false;
        _source[j] = i;
        _target[j] = _root;
        _reverse[j] = k;
        _forward[k] = true;
        _source[k] = _root;
        _target[k] = i;
        _reverse[k] = j;
        ++j; ++k;
      }
      _first_out[i] = j;
      _first_out[_res_node_num] = k;
      for (ArcIt a(_graph); a != INVALID; ++a) {
        int fi = _arc_idf[a];
        int bi = _arc_idb[a];
        _reverse[fi] = bi;
        _reverse[bi] = fi;
      }

      // Reset parameters
      resetParams();
      return *this;
    }

    /// @}

    /// \name Query Functions
    /// The results of the algorithm can be obtained using these
    /// functions.\n
    /// The \ref run() function must be called before using them.

    /// @{

    /// \brief Return the total cost of the found flow.
    ///
    /// This function returns the total cost of the found flow.
    /// Its complexity is O(m).
    ///
    /// \note The return type of the function can be specified as a
    /// template parameter. For example,
    /// \code
    ///   cs.totalCost<double>();
    /// \endcode
    /// It is useful if the total cost cannot be stored in the \c Cost
    /// type of the algorithm, which is the default return type of the
    /// function.
    ///
    /// \pre \ref run() must be called before using this function.
    template <typename Number>
    Number totalCost() const {
      Number c = 0;
      for (ArcIt a(_graph); a != INVALID; ++a) {
        int i = _arc_idb[a];
        c += static_cast<Number>(_res_cap[i]) *
             (-static_cast<Number>(_scost[i]));
      }
      return c;
    }

#ifndef DOXYGEN
    Cost totalCost() const {
      return totalCost<Cost>();
    }
#endif

    /// \brief Return the flow on the given arc.
    ///
    /// This function returns the flow on the given arc.
    ///
    /// \pre \ref run() must be called before using this function.
    Value flow(const Arc& a) const {
      return _res_cap[_arc_idb[a]];
    }

    /// \brief Copy the flow values (the primal solution) into the
    /// given map.
    ///
    /// This function copies the flow value on each arc into the given
    /// map. The \c Value type of the algorithm must be convertible to
    /// the \c Value type of the map.
    ///
    /// \pre \ref run() must be called before using this function.
    template <typename FlowMap>
    void flowMap(FlowMap &map) const {
      for (ArcIt a(_graph); a != INVALID; ++a) {
        map.set(a, _res_cap[_arc_idb[a]]);
      }
    }

    /// \brief Return the potential (dual value) of the given node.
    ///
    /// This function returns the potential (dual value) of the
    /// given node.
    ///
    /// \pre \ref run() must be called before using this function.
    Cost potential(const Node& n) const {
      return static_cast<Cost>(_pi[_node_id[n]]);
    }

    /// \brief Copy the potential values (the dual solution) into the
    /// given map.
    ///
    /// This function copies the potential (dual value) of each node
    /// into the given map.
    /// The \c Cost type of the algorithm must be convertible to the
    /// \c Value type of the map.
    ///
    /// \pre \ref run() must be called before using this function.
    template <typename PotentialMap>
    void potentialMap(PotentialMap &map) const {
      for (NodeIt n(_graph); n != INVALID; ++n) {
        map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
      }
    }

    /// @}

  private:

    // Initialize the algorithm
    ProblemType init() {
      if (_res_node_num <= 1) return INFEASIBLE;

      // Check the sum of supply values
      _sum_supply = 0;
      for (int i = 0; i != _root; ++i) {
        _sum_supply += _supply[i];
      }
      if (_sum_supply > 0) return INFEASIBLE;

      // Check lower and upper bounds
      LEMON_DEBUG(checkBoundMaps(),
          "Upper bounds must be greater or equal to the lower bounds");


      // Initialize vectors
      for (int i = 0; i != _res_node_num; ++i) {
        _pi[i] = 0;
        _excess[i] = _supply[i];
      }

      // Remove infinite upper bounds and check negative arcs
      const Value MAX = std::numeric_limits<Value>::max();
      int last_out;
      if (_has_lower) {
        for (int i = 0; i != _root; ++i) {
          last_out = _first_out[i+1];
          for (int j = _first_out[i]; j != last_out; ++j) {
            if (_forward[j]) {
              Value c = _scost[j] < 0 ? _upper[j] : _lower[j];
              if (c >= MAX) return UNBOUNDED;
              _excess[i] -= c;
              _excess[_target[j]] += c;
            }
          }
        }
      } else {
        for (int i = 0; i != _root; ++i) {
          last_out = _first_out[i+1];
          for (int j = _first_out[i]; j != last_out; ++j) {
            if (_forward[j] && _scost[j] < 0) {
              Value c = _upper[j];
              if (c >= MAX) return UNBOUNDED;
              _excess[i] -= c;
              _excess[_target[j]] += c;
            }
          }
        }
      }
      Value ex, max_cap = 0;
      for (int i = 0; i != _res_node_num; ++i) {
        ex = _excess[i];
        _excess[i] = 0;
        if (ex < 0) max_cap -= ex;
      }
      for (int j = 0; j != _res_arc_num; ++j) {
        if (_upper[j] >= MAX) _upper[j] = max_cap;
      }

      // Initialize the large cost vector and the epsilon parameter
      _epsilon = 0;
      LargeCost lc;
      for (int i = 0; i != _root; ++i) {
        last_out = _first_out[i+1];
        for (int j = _first_out[i]; j != last_out; ++j) {
          lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha;
          _cost[j] = lc;
          if (lc > _epsilon) _epsilon = lc;
        }
      }
      _epsilon /= _alpha;

      // Initialize maps for Circulation and remove non-zero lower bounds
      ConstMap<Arc, Value> low(0);
      typedef typename Digraph::template ArcMap<Value> ValueArcMap;
      typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
      ValueArcMap cap(_graph), flow(_graph);
      ValueNodeMap sup(_graph);
      for (NodeIt n(_graph); n != INVALID; ++n) {
        sup[n] = _supply[_node_id[n]];
      }
      if (_has_lower) {
        for (ArcIt a(_graph); a != INVALID; ++a) {
          int j = _arc_idf[a];
          Value c = _lower[j];
          cap[a] = _upper[j] - c;
          sup[_graph.source(a)] -= c;
          sup[_graph.target(a)] += c;
        }
      } else {
        for (ArcIt a(_graph); a != INVALID; ++a) {
          cap[a] = _upper[_arc_idf[a]];
        }
      }

      _sup_node_num = 0;
      for (NodeIt n(_graph); n != INVALID; ++n) {
        if (sup[n] > 0) ++_sup_node_num;
      }

      // Find a feasible flow using Circulation
      Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
        circ(_graph, low, cap, sup);
      if (!circ.flowMap(flow).run()) return INFEASIBLE;

      // Set residual capacities and handle GEQ supply type
      if (_sum_supply < 0) {
        for (ArcIt a(_graph); a != INVALID; ++a) {
          Value fa = flow[a];
          _res_cap[_arc_idf[a]] = cap[a] - fa;
          _res_cap[_arc_idb[a]] = fa;
          sup[_graph.source(a)] -= fa;
          sup[_graph.target(a)] += fa;
        }
        for (NodeIt n(_graph); n != INVALID; ++n) {
          _excess[_node_id[n]] = sup[n];
        }
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
          int u = _target[a];
          int ra = _reverse[a];
          _res_cap[a] = -_sum_supply + 1;
          _res_cap[ra] = -_excess[u];
          _cost[a] = 0;
          _cost[ra] = 0;
          _excess[u] = 0;
        }
      } else {
        for (ArcIt a(_graph); a != INVALID; ++a) {
          Value fa = flow[a];
          _res_cap[_arc_idf[a]] = cap[a] - fa;
          _res_cap[_arc_idb[a]] = fa;
        }
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
          int ra = _reverse[a];
          _res_cap[a] = 0;
          _res_cap[ra] = 0;
          _cost[a] = 0;
          _cost[ra] = 0;
        }
      }

      // Initialize data structures for buckets
      _max_rank = _alpha * _res_node_num;
      _buckets.resize(_max_rank);
      _bucket_next.resize(_res_node_num + 1);
      _bucket_prev.resize(_res_node_num + 1);
      _rank.resize(_res_node_num + 1);

      return OPTIMAL;
    }

    // Check if the upper bound is greater than or equal to the lower bound
    // on each forward arc.
    bool checkBoundMaps() {
      for (int j = 0; j != _res_arc_num; ++j) {
        if (_forward[j] && _upper[j] < _lower[j]) return false;
      }
      return true;
    }

    // Execute the algorithm and transform the results
    void start(Method method) {
      const int MAX_PARTIAL_PATH_LENGTH = 4;

      switch (method) {
        case PUSH:
          startPush();
          break;
        case AUGMENT:
          startAugment(_res_node_num - 1);
          break;
        case PARTIAL_AUGMENT:
          startAugment(MAX_PARTIAL_PATH_LENGTH);
          break;
      }

      // Compute node potentials (dual solution)
      for (int i = 0; i != _res_node_num; ++i) {
        _pi[i] = static_cast<Cost>(_pi[i] / (_res_node_num * _alpha));
      }
      bool optimal = true;
      for (int i = 0; optimal && i != _res_node_num; ++i) {
        LargeCost pi_i = _pi[i];
        int last_out = _first_out[i+1];
        for (int j = _first_out[i]; j != last_out; ++j) {
          if (_res_cap[j] > 0 && _scost[j] + pi_i - _pi[_target[j]] < 0) {
            optimal = false;
            break;
          }
        }
      }

      if (!optimal) {
        // Compute node potentials for the original costs with BellmanFord
        // (if it is necessary)
        typedef std::pair<int, int> IntPair;
        StaticDigraph sgr;
        std::vector<IntPair> arc_vec;
        std::vector<LargeCost> cost_vec;
        LargeCostArcMap cost_map(cost_vec);

        arc_vec.clear();
        cost_vec.clear();
        for (int j = 0; j != _res_arc_num; ++j) {
          if (_res_cap[j] > 0) {
            int u = _source[j], v = _target[j];
            arc_vec.push_back(IntPair(u, v));
            cost_vec.push_back(_scost[j] + _pi[u] - _pi[v]);
          }
        }
        sgr.build(_res_node_num, arc_vec.begin(), arc_vec.end());

        typename BellmanFord<StaticDigraph, LargeCostArcMap>::Create
          bf(sgr, cost_map);
        bf.init(0);
        bf.start();

        for (int i = 0; i != _res_node_num; ++i) {
          _pi[i] += bf.dist(sgr.node(i));
        }
      }

      // Shift potentials to meet the requirements of the GEQ type
      // optimality conditions
      LargeCost max_pot = _pi[_root];
      for (int i = 0; i != _res_node_num; ++i) {
        if (_pi[i] > max_pot) max_pot = _pi[i];
      }
      if (max_pot != 0) {
        for (int i = 0; i != _res_node_num; ++i) {
          _pi[i] -= max_pot;
        }
      }

      // Handle non-zero lower bounds
      if (_has_lower) {
        int limit = _first_out[_root];
        for (int j = 0; j != limit; ++j) {
          if (_forward[j]) _res_cap[_reverse[j]] += _lower[j];
        }
      }
    }

    // Initialize a cost scaling phase
    void initPhase() {
      // Saturate arcs not satisfying the optimality condition
      for (int u = 0; u != _res_node_num; ++u) {
        int last_out = _first_out[u+1];
        LargeCost pi_u = _pi[u];
        for (int a = _first_out[u]; a != last_out; ++a) {
          Value delta = _res_cap[a];
          if (delta > 0) {
            int v = _target[a];
            if (_cost[a] + pi_u - _pi[v] < 0) {
              _excess[u] -= delta;
              _excess[v] += delta;
              _res_cap[a] = 0;
              _res_cap[_reverse[a]] += delta;
            }
          }
        }
      }

      // Find active nodes (i.e. nodes with positive excess)
      for (int u = 0; u != _res_node_num; ++u) {
        if (_excess[u] > 0) _active_nodes.push_back(u);
      }

      // Initialize the next arcs
      for (int u = 0; u != _res_node_num; ++u) {
        _next_out[u] = _first_out[u];
      }
    }

    // Price (potential) refinement heuristic
    bool priceRefinement() {

      // Stack for stroing the topological order
      IntVector stack(_res_node_num);
      int stack_top;

      // Perform phases
      while (topologicalSort(stack, stack_top)) {

        // Compute node ranks in the acyclic admissible network and
        // store the nodes in buckets
        for (int i = 0; i != _res_node_num; ++i) {
          _rank[i] = 0;
        }
        const int bucket_end = _root + 1;
        for (int r = 0; r != _max_rank; ++r) {
          _buckets[r] = bucket_end;
        }
        int top_rank = 0;
        for ( ; stack_top >= 0; --stack_top) {
          int u = stack[stack_top], v;
          int rank_u = _rank[u];

          LargeCost rc, pi_u = _pi[u];
          int last_out = _first_out[u+1];
          for (int a = _first_out[u]; a != last_out; ++a) {
            if (_res_cap[a] > 0) {
              v = _target[a];
              rc = _cost[a] + pi_u - _pi[v];
              if (rc < 0) {
                LargeCost nrc = static_cast<LargeCost>((-rc - 0.5) / _epsilon);
                if (nrc < LargeCost(_max_rank)) {
                  int new_rank_v = rank_u + static_cast<int>(nrc);
                  if (new_rank_v > _rank[v]) {
                    _rank[v] = new_rank_v;
                  }
                }
              }
            }
          }

          if (rank_u > 0) {
            top_rank = std::max(top_rank, rank_u);
            int bfirst = _buckets[rank_u];
            _bucket_next[u] = bfirst;
            _bucket_prev[bfirst] = u;
            _buckets[rank_u] = u;
          }
        }

        // Check if the current flow is epsilon-optimal
        if (top_rank == 0) {
          return true;
        }

        // Process buckets in top-down order
        for (int rank = top_rank; rank > 0; --rank) {
          while (_buckets[rank] != bucket_end) {
            // Remove the first node from the current bucket
            int u = _buckets[rank];
            _buckets[rank] = _bucket_next[u];

            // Search the outgoing arcs of u
            LargeCost rc, pi_u = _pi[u];
            int last_out = _first_out[u+1];
            int v, old_rank_v, new_rank_v;
            for (int a = _first_out[u]; a != last_out; ++a) {
              if (_res_cap[a] > 0) {
                v = _target[a];
                old_rank_v = _rank[v];

                if (old_rank_v < rank) {

                  // Compute the new rank of node v
                  rc = _cost[a] + pi_u - _pi[v];
                  if (rc < 0) {
                    new_rank_v = rank;
                  } else {
                    LargeCost nrc = rc / _epsilon;
                    new_rank_v = 0;
                    if (nrc < LargeCost(_max_rank)) {
                      new_rank_v = rank - 1 - static_cast<int>(nrc);
                    }
                  }

                  // Change the rank of node v
                  if (new_rank_v > old_rank_v) {
                    _rank[v] = new_rank_v;

                    // Remove v from its old bucket
                    if (old_rank_v > 0) {
                      if (_buckets[old_rank_v] == v) {
                        _buckets[old_rank_v] = _bucket_next[v];
                      } else {
                        int pv = _bucket_prev[v], nv = _bucket_next[v];
                        _bucket_next[pv] = nv;
                        _bucket_prev[nv] = pv;
                      }
                    }

                    // Insert v into its new bucket
                    int nv = _buckets[new_rank_v];
                    _bucket_next[v] = nv;
                    _bucket_prev[nv] = v;
                    _buckets[new_rank_v] = v;
                  }
                }
              }
            }

            // Refine potential of node u
            _pi[u] -= rank * _epsilon;
          }
        }

      }

      return false;
    }

    // Find and cancel cycles in the admissible network and
    // determine topological order using DFS
    bool topologicalSort(IntVector &stack, int &stack_top) {
      const int MAX_CYCLE_CANCEL = 1;

      BoolVector reached(_res_node_num, false);
      BoolVector processed(_res_node_num, false);
      IntVector pred(_res_node_num);
      for (int i = 0; i != _res_node_num; ++i) {
        _next_out[i] = _first_out[i];
      }
      stack_top = -1;

      int cycle_cnt = 0;
      for (int start = 0; start != _res_node_num; ++start) {
        if (reached[start]) continue;

        // Start DFS search from this start node
        pred[start] = -1;
        int tip = start, v;
        while (true) {
          // Check the outgoing arcs of the current tip node
          reached[tip] = true;
          LargeCost pi_tip = _pi[tip];
          int a, last_out = _first_out[tip+1];
          for (a = _next_out[tip]; a != last_out; ++a) {
            if (_res_cap[a] > 0) {
              v = _target[a];
              if (_cost[a] + pi_tip - _pi[v] < 0) {
                if (!reached[v]) {
                  // A new node is reached
                  reached[v] = true;
                  pred[v] = tip;
                  _next_out[tip] = a;
                  tip = v;
                  a = _next_out[tip];
                  last_out = _first_out[tip+1];
                  break;
                }
                else if (!processed[v]) {
                  // A cycle is found
                  ++cycle_cnt;
                  _next_out[tip] = a;

                  // Find the minimum residual capacity along the cycle
                  Value d, delta = _res_cap[a];
                  int u, delta_node = tip;
                  for (u = tip; u != v; ) {
                    u = pred[u];
                    d = _res_cap[_next_out[u]];
                    if (d <= delta) {
                      delta = d;
                      delta_node = u;
                    }
                  }

                  // Augment along the cycle
                  _res_cap[a] -= delta;
                  _res_cap[_reverse[a]] += delta;
                  for (u = tip; u != v; ) {
                    u = pred[u];
                    int ca = _next_out[u];
                    _res_cap[ca] -= delta;
                    _res_cap[_reverse[ca]] += delta;
                  }

                  // Check the maximum number of cycle canceling
                  if (cycle_cnt >= MAX_CYCLE_CANCEL) {
                    return false;
                  }

                  // Roll back search to delta_node
                  if (delta_node != tip) {
                    for (u = tip; u != delta_node; u = pred[u]) {
                      reached[u] = false;
                    }
                    tip = delta_node;
                    a = _next_out[tip] + 1;
                    last_out = _first_out[tip+1];
                    break;
                  }
                }
              }
            }
          }

          // Step back to the previous node
          if (a == last_out) {
            processed[tip] = true;
            stack[++stack_top] = tip;
            tip = pred[tip];
            if (tip < 0) {
              // Finish DFS from the current start node
              break;
            }
            ++_next_out[tip];
          }
        }

      }

      return (cycle_cnt == 0);
    }

    // Global potential update heuristic
    void globalUpdate() {
      const int bucket_end = _root + 1;

      // Initialize buckets
      for (int r = 0; r != _max_rank; ++r) {
        _buckets[r] = bucket_end;
      }
      Value total_excess = 0;
      int b0 = bucket_end;
      for (int i = 0; i != _res_node_num; ++i) {
        if (_excess[i] < 0) {
          _rank[i] = 0;
          _bucket_next[i] = b0;
          _bucket_prev[b0] = i;
          b0 = i;
        } else {
          total_excess += _excess[i];
          _rank[i] = _max_rank;
        }
      }
      if (total_excess == 0) return;
      _buckets[0] = b0;

      // Search the buckets
      int r = 0;
      for ( ; r != _max_rank; ++r) {
        while (_buckets[r] != bucket_end) {
          // Remove the first node from the current bucket
          int u = _buckets[r];
          _buckets[r] = _bucket_next[u];

          // Search the incoming arcs of u
          LargeCost pi_u = _pi[u];
          int last_out = _first_out[u+1];
          for (int a = _first_out[u]; a != last_out; ++a) {
            int ra = _reverse[a];
            if (_res_cap[ra] > 0) {
              int v = _source[ra];
              int old_rank_v = _rank[v];
              if (r < old_rank_v) {
                // Compute the new rank of v
                LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon;
                int new_rank_v = old_rank_v;
                if (nrc < LargeCost(_max_rank)) {
                  new_rank_v = r + 1 + static_cast<int>(nrc);
                }

                // Change the rank of v
                if (new_rank_v < old_rank_v) {
                  _rank[v] = new_rank_v;
                  _next_out[v] = _first_out[v];

                  // Remove v from its old bucket
                  if (old_rank_v < _max_rank) {
                    if (_buckets[old_rank_v] == v) {
                      _buckets[old_rank_v] = _bucket_next[v];
                    } else {
                      int pv = _bucket_prev[v], nv = _bucket_next[v];
                      _bucket_next[pv] = nv;
                      _bucket_prev[nv] = pv;
                    }
                  }

                  // Insert v into its new bucket
                  int nv = _buckets[new_rank_v];
                  _bucket_next[v] = nv;
                  _bucket_prev[nv] = v;
                  _buckets[new_rank_v] = v;
                }
              }
            }
          }

          // Finish search if there are no more active nodes
          if (_excess[u] > 0) {
            total_excess -= _excess[u];
            if (total_excess <= 0) break;
          }
        }
        if (total_excess <= 0) break;
      }

      // Relabel nodes
      for (int u = 0; u != _res_node_num; ++u) {
        int k = std::min(_rank[u], r);
        if (k > 0) {
          _pi[u] -= _epsilon * k;
          _next_out[u] = _first_out[u];
        }
      }
    }

    /// Execute the algorithm performing augment and relabel operations
    void startAugment(int max_length) {
      // Paramters for heuristics
      const int PRICE_REFINEMENT_LIMIT = 2;
      const double GLOBAL_UPDATE_FACTOR = 1.0;
      const int global_update_skip = static_cast<int>(GLOBAL_UPDATE_FACTOR *
        (_res_node_num + _sup_node_num * _sup_node_num));
      int next_global_update_limit = global_update_skip;

      // Perform cost scaling phases
      IntVector path;
      BoolVector path_arc(_res_arc_num, false);
      int relabel_cnt = 0;
      int eps_phase_cnt = 0;
      for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
                                        1 : _epsilon / _alpha )
      {
        ++eps_phase_cnt;

        // Price refinement heuristic
        if (eps_phase_cnt >= PRICE_REFINEMENT_LIMIT) {
          if (priceRefinement()) continue;
        }

        // Initialize current phase
        initPhase();

        // Perform partial augment and relabel operations
        while (true) {
          // Select an active node (FIFO selection)
          while (_active_nodes.size() > 0 &&
                 _excess[_active_nodes.front()] <= 0) {
            _active_nodes.pop_front();
          }
          if (_active_nodes.size() == 0) break;
          int start = _active_nodes.front();

          // Find an augmenting path from the start node
          int tip = start;
          while (int(path.size()) < max_length && _excess[tip] >= 0) {
            int u;
            LargeCost rc, min_red_cost = std::numeric_limits<LargeCost>::max();
            LargeCost pi_tip = _pi[tip];
            int last_out = _first_out[tip+1];
            for (int a = _next_out[tip]; a != last_out; ++a) {
              if (_res_cap[a] > 0) {
                u = _target[a];
                rc = _cost[a] + pi_tip - _pi[u];
                if (rc < 0) {
                  path.push_back(a);
                  _next_out[tip] = a;
                  if (path_arc[a]) {
                    goto augment;   // a cycle is found, stop path search
                  }
                  tip = u;
                  path_arc[a] = true;
                  goto next_step;
                }
                else if (rc < min_red_cost) {
                  min_red_cost = rc;
                }
              }
            }

            // Relabel tip node
            if (tip != start) {
              int ra = _reverse[path.back()];
              min_red_cost =
                std::min(min_red_cost, _cost[ra] + pi_tip - _pi[_target[ra]]);
            }
            last_out = _next_out[tip];
            for (int a = _first_out[tip]; a != last_out; ++a) {
              if (_res_cap[a] > 0) {
                rc = _cost[a] + pi_tip - _pi[_target[a]];
                if (rc < min_red_cost) {
                  min_red_cost = rc;
                }
              }
            }
            _pi[tip] -= min_red_cost + _epsilon;
            _next_out[tip] = _first_out[tip];
            ++relabel_cnt;

            // Step back
            if (tip != start) {
              int pa = path.back();
              path_arc[pa] = false;
              tip = _source[pa];
              path.pop_back();
            }

          next_step: ;
          }

          // Augment along the found path (as much flow as possible)
        augment:
          Value delta;
          int pa, u, v = start;
          for (int i = 0; i != int(path.size()); ++i) {
            pa = path[i];
            u = v;
            v = _target[pa];
            path_arc[pa] = false;
            delta = std::min(_res_cap[pa], _excess[u]);
            _res_cap[pa] -= delta;
            _res_cap[_reverse[pa]] += delta;
            _excess[u] -= delta;
            _excess[v] += delta;
            if (_excess[v] > 0 && _excess[v] <= delta) {
              _active_nodes.push_back(v);
            }
          }
          path.clear();

          // Global update heuristic
          if (relabel_cnt >= next_global_update_limit) {
            globalUpdate();
            next_global_update_limit += global_update_skip;
          }
        }

      }

    }

    /// Execute the algorithm performing push and relabel operations
    void startPush() {
      // Paramters for heuristics
      const int PRICE_REFINEMENT_LIMIT = 2;
      const double GLOBAL_UPDATE_FACTOR = 2.0;

      const int global_update_skip = static_cast<int>(GLOBAL_UPDATE_FACTOR *
        (_res_node_num + _sup_node_num * _sup_node_num));
      int next_global_update_limit = global_update_skip;

      // Perform cost scaling phases
      BoolVector hyper(_res_node_num, false);
      LargeCostVector hyper_cost(_res_node_num);
      int relabel_cnt = 0;
      int eps_phase_cnt = 0;
      for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
                                        1 : _epsilon / _alpha )
      {
        ++eps_phase_cnt;

        // Price refinement heuristic
        if (eps_phase_cnt >= PRICE_REFINEMENT_LIMIT) {
          if (priceRefinement()) continue;
        }

        // Initialize current phase
        initPhase();

        // Perform push and relabel operations
        while (_active_nodes.size() > 0) {
          LargeCost min_red_cost, rc, pi_n;
          Value delta;
          int n, t, a, last_out = _res_arc_num;

        next_node:
          // Select an active node (FIFO selection)
          n = _active_nodes.front();
          last_out = _first_out[n+1];
          pi_n = _pi[n];

          // Perform push operations if there are admissible arcs
          if (_excess[n] > 0) {
            for (a = _next_out[n]; a != last_out; ++a) {
              if (_res_cap[a] > 0 &&
                  _cost[a] + pi_n - _pi[_target[a]] < 0) {
                delta = std::min(_res_cap[a], _excess[n]);
                t = _target[a];

                // Push-look-ahead heuristic
                Value ahead = -_excess[t];
                int last_out_t = _first_out[t+1];
                LargeCost pi_t = _pi[t];
                for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
                  if (_res_cap[ta] > 0 &&
                      _cost[ta] + pi_t - _pi[_target[ta]] < 0)
                    ahead += _res_cap[ta];
                  if (ahead >= delta) break;
                }
                if (ahead < 0) ahead = 0;

                // Push flow along the arc
                if (ahead < delta && !hyper[t]) {
                  _res_cap[a] -= ahead;
                  _res_cap[_reverse[a]] += ahead;
                  _excess[n] -= ahead;
                  _excess[t] += ahead;
                  _active_nodes.push_front(t);
                  hyper[t] = true;
                  hyper_cost[t] = _cost[a] + pi_n - pi_t;
                  _next_out[n] = a;
                  goto next_node;
                } else {
                  _res_cap[a] -= delta;
                  _res_cap[_reverse[a]] += delta;
                  _excess[n] -= delta;
                  _excess[t] += delta;
                  if (_excess[t] > 0 && _excess[t] <= delta)
                    _active_nodes.push_back(t);
                }

                if (_excess[n] == 0) {
                  _next_out[n] = a;
                  goto remove_nodes;
                }
              }
            }
            _next_out[n] = a;
          }

          // Relabel the node if it is still active (or hyper)
          if (_excess[n] > 0 || hyper[n]) {
             min_red_cost = hyper[n] ? -hyper_cost[n] :
               std::numeric_limits<LargeCost>::max();
            for (int a = _first_out[n]; a != last_out; ++a) {
              if (_res_cap[a] > 0) {
                rc = _cost[a] + pi_n - _pi[_target[a]];
                if (rc < min_red_cost) {
                  min_red_cost = rc;
                }
              }
            }
            _pi[n] -= min_red_cost + _epsilon;
            _next_out[n] = _first_out[n];
            hyper[n] = false;
            ++relabel_cnt;
          }

          // Remove nodes that are not active nor hyper
        remove_nodes:
          while ( _active_nodes.size() > 0 &&
                  _excess[_active_nodes.front()] <= 0 &&
                  !hyper[_active_nodes.front()] ) {
            _active_nodes.pop_front();
          }

          // Global update heuristic
          if (relabel_cnt >= next_global_update_limit) {
            globalUpdate();
            for (int u = 0; u != _res_node_num; ++u)
              hyper[u] = false;
            next_global_update_limit += global_update_skip;
          }
        }
      }
    }

  }; //class CostScaling

  ///@}

} //namespace lemon

#endif //LEMON_COST_SCALING_H