/usr/include/lemon/cost_scaling.h is in liblemon-dev 1.3.1+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 | /* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2013
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_COST_SCALING_H
#define LEMON_COST_SCALING_H
/// \ingroup min_cost_flow_algs
/// \file
/// \brief Cost scaling algorithm for finding a minimum cost flow.
#include <vector>
#include <deque>
#include <limits>
#include <lemon/core.h>
#include <lemon/maps.h>
#include <lemon/math.h>
#include <lemon/static_graph.h>
#include <lemon/circulation.h>
#include <lemon/bellman_ford.h>
namespace lemon {
/// \brief Default traits class of CostScaling algorithm.
///
/// Default traits class of CostScaling algorithm.
/// \tparam GR Digraph type.
/// \tparam V The number type used for flow amounts, capacity bounds
/// and supply values. By default it is \c int.
/// \tparam C The number type used for costs and potentials.
/// By default it is the same as \c V.
#ifdef DOXYGEN
template <typename GR, typename V = int, typename C = V>
#else
template < typename GR, typename V = int, typename C = V,
bool integer = std::numeric_limits<C>::is_integer >
#endif
struct CostScalingDefaultTraits
{
/// The type of the digraph
typedef GR Digraph;
/// The type of the flow amounts, capacity bounds and supply values
typedef V Value;
/// The type of the arc costs
typedef C Cost;
/// \brief The large cost type used for internal computations
///
/// The large cost type used for internal computations.
/// It is \c long \c long if the \c Cost type is integer,
/// otherwise it is \c double.
/// \c Cost must be convertible to \c LargeCost.
typedef double LargeCost;
};
// Default traits class for integer cost types
template <typename GR, typename V, typename C>
struct CostScalingDefaultTraits<GR, V, C, true>
{
typedef GR Digraph;
typedef V Value;
typedef C Cost;
#ifdef LEMON_HAVE_LONG_LONG
typedef long long LargeCost;
#else
typedef long LargeCost;
#endif
};
/// \addtogroup min_cost_flow_algs
/// @{
/// \brief Implementation of the Cost Scaling algorithm for
/// finding a \ref min_cost_flow "minimum cost flow".
///
/// \ref CostScaling implements a cost scaling algorithm that performs
/// push/augment and relabel operations for finding a \ref min_cost_flow
/// "minimum cost flow" \cite amo93networkflows,
/// \cite goldberg90approximation,
/// \cite goldberg97efficient, \cite bunnagel98efficient.
/// It is a highly efficient primal-dual solution method, which
/// can be viewed as the generalization of the \ref Preflow
/// "preflow push-relabel" algorithm for the maximum flow problem.
/// It is a polynomial algorithm, its running time complexity is
/// \f$O(n^2m\log(nK))\f$, where <i>K</i> denotes the maximum arc cost.
///
/// In general, \ref NetworkSimplex and \ref CostScaling are the fastest
/// implementations available in LEMON for solving this problem.
/// (For more information, see \ref min_cost_flow_algs "the module page".)
///
/// Most of the parameters of the problem (except for the digraph)
/// can be given using separate functions, and the algorithm can be
/// executed using the \ref run() function. If some parameters are not
/// specified, then default values will be used.
///
/// \tparam GR The digraph type the algorithm runs on.
/// \tparam V The number type used for flow amounts, capacity bounds
/// and supply values in the algorithm. By default, it is \c int.
/// \tparam C The number type used for costs and potentials in the
/// algorithm. By default, it is the same as \c V.
/// \tparam TR The traits class that defines various types used by the
/// algorithm. By default, it is \ref CostScalingDefaultTraits
/// "CostScalingDefaultTraits<GR, V, C>".
/// In most cases, this parameter should not be set directly,
/// consider to use the named template parameters instead.
///
/// \warning Both \c V and \c C must be signed number types.
/// \warning All input data (capacities, supply values, and costs) must
/// be integer.
/// \warning This algorithm does not support negative costs for
/// arcs having infinite upper bound.
///
/// \note %CostScaling provides three different internal methods,
/// from which the most efficient one is used by default.
/// For more information, see \ref Method.
#ifdef DOXYGEN
template <typename GR, typename V, typename C, typename TR>
#else
template < typename GR, typename V = int, typename C = V,
typename TR = CostScalingDefaultTraits<GR, V, C> >
#endif
class CostScaling
{
public:
/// The type of the digraph
typedef typename TR::Digraph Digraph;
/// The type of the flow amounts, capacity bounds and supply values
typedef typename TR::Value Value;
/// The type of the arc costs
typedef typename TR::Cost Cost;
/// \brief The large cost type
///
/// The large cost type used for internal computations.
/// By default, it is \c long \c long if the \c Cost type is integer,
/// otherwise it is \c double.
typedef typename TR::LargeCost LargeCost;
/// \brief The \ref lemon::CostScalingDefaultTraits "traits class"
/// of the algorithm
typedef TR Traits;
public:
/// \brief Problem type constants for the \c run() function.
///
/// Enum type containing the problem type constants that can be
/// returned by the \ref run() function of the algorithm.
enum ProblemType {
/// The problem has no feasible solution (flow).
INFEASIBLE,
/// The problem has optimal solution (i.e. it is feasible and
/// bounded), and the algorithm has found optimal flow and node
/// potentials (primal and dual solutions).
OPTIMAL,
/// The digraph contains an arc of negative cost and infinite
/// upper bound. It means that the objective function is unbounded
/// on that arc, however, note that it could actually be bounded
/// over the feasible flows, but this algroithm cannot handle
/// these cases.
UNBOUNDED
};
/// \brief Constants for selecting the internal method.
///
/// Enum type containing constants for selecting the internal method
/// for the \ref run() function.
///
/// \ref CostScaling provides three internal methods that differ mainly
/// in their base operations, which are used in conjunction with the
/// relabel operation.
/// By default, the so called \ref PARTIAL_AUGMENT
/// "Partial Augment-Relabel" method is used, which turned out to be
/// the most efficient and the most robust on various test inputs.
/// However, the other methods can be selected using the \ref run()
/// function with the proper parameter.
enum Method {
/// Local push operations are used, i.e. flow is moved only on one
/// admissible arc at once.
PUSH,
/// Augment operations are used, i.e. flow is moved on admissible
/// paths from a node with excess to a node with deficit.
AUGMENT,
/// Partial augment operations are used, i.e. flow is moved on
/// admissible paths started from a node with excess, but the
/// lengths of these paths are limited. This method can be viewed
/// as a combined version of the previous two operations.
PARTIAL_AUGMENT
};
private:
TEMPLATE_DIGRAPH_TYPEDEFS(GR);
typedef std::vector<int> IntVector;
typedef std::vector<Value> ValueVector;
typedef std::vector<Cost> CostVector;
typedef std::vector<LargeCost> LargeCostVector;
typedef std::vector<char> BoolVector;
// Note: vector<char> is used instead of vector<bool>
// for efficiency reasons
private:
template <typename KT, typename VT>
class StaticVectorMap {
public:
typedef KT Key;
typedef VT Value;
StaticVectorMap(std::vector<Value>& v) : _v(v) {}
const Value& operator[](const Key& key) const {
return _v[StaticDigraph::id(key)];
}
Value& operator[](const Key& key) {
return _v[StaticDigraph::id(key)];
}
void set(const Key& key, const Value& val) {
_v[StaticDigraph::id(key)] = val;
}
private:
std::vector<Value>& _v;
};
typedef StaticVectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap;
private:
// Data related to the underlying digraph
const GR &_graph;
int _node_num;
int _arc_num;
int _res_node_num;
int _res_arc_num;
int _root;
// Parameters of the problem
bool _has_lower;
Value _sum_supply;
int _sup_node_num;
// Data structures for storing the digraph
IntNodeMap _node_id;
IntArcMap _arc_idf;
IntArcMap _arc_idb;
IntVector _first_out;
BoolVector _forward;
IntVector _source;
IntVector _target;
IntVector _reverse;
// Node and arc data
ValueVector _lower;
ValueVector _upper;
CostVector _scost;
ValueVector _supply;
ValueVector _res_cap;
LargeCostVector _cost;
LargeCostVector _pi;
ValueVector _excess;
IntVector _next_out;
std::deque<int> _active_nodes;
// Data for scaling
LargeCost _epsilon;
int _alpha;
IntVector _buckets;
IntVector _bucket_next;
IntVector _bucket_prev;
IntVector _rank;
int _max_rank;
public:
/// \brief Constant for infinite upper bounds (capacities).
///
/// Constant for infinite upper bounds (capacities).
/// It is \c std::numeric_limits<Value>::infinity() if available,
/// \c std::numeric_limits<Value>::max() otherwise.
const Value INF;
public:
/// \name Named Template Parameters
/// @{
template <typename T>
struct SetLargeCostTraits : public Traits {
typedef T LargeCost;
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// \c LargeCost type.
///
/// \ref named-templ-param "Named parameter" for setting \c LargeCost
/// type, which is used for internal computations in the algorithm.
/// \c Cost must be convertible to \c LargeCost.
template <typename T>
struct SetLargeCost
: public CostScaling<GR, V, C, SetLargeCostTraits<T> > {
typedef CostScaling<GR, V, C, SetLargeCostTraits<T> > Create;
};
/// @}
protected:
CostScaling() {}
public:
/// \brief Constructor.
///
/// The constructor of the class.
///
/// \param graph The digraph the algorithm runs on.
CostScaling(const GR& graph) :
_graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
INF(std::numeric_limits<Value>::has_infinity ?
std::numeric_limits<Value>::infinity() :
std::numeric_limits<Value>::max())
{
// Check the number types
LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
"The flow type of CostScaling must be signed");
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
"The cost type of CostScaling must be signed");
// Reset data structures
reset();
}
/// \name Parameters
/// The parameters of the algorithm can be specified using these
/// functions.
/// @{
/// \brief Set the lower bounds on the arcs.
///
/// This function sets the lower bounds on the arcs.
/// If it is not used before calling \ref run(), the lower bounds
/// will be set to zero on all arcs.
///
/// \param map An arc map storing the lower bounds.
/// Its \c Value type must be convertible to the \c Value type
/// of the algorithm.
///
/// \return <tt>(*this)</tt>
template <typename LowerMap>
CostScaling& lowerMap(const LowerMap& map) {
_has_lower = true;
for (ArcIt a(_graph); a != INVALID; ++a) {
_lower[_arc_idf[a]] = map[a];
}
return *this;
}
/// \brief Set the upper bounds (capacities) on the arcs.
///
/// This function sets the upper bounds (capacities) on the arcs.
/// If it is not used before calling \ref run(), the upper bounds
/// will be set to \ref INF on all arcs (i.e. the flow value will be
/// unbounded from above).
///
/// \param map An arc map storing the upper bounds.
/// Its \c Value type must be convertible to the \c Value type
/// of the algorithm.
///
/// \return <tt>(*this)</tt>
template<typename UpperMap>
CostScaling& upperMap(const UpperMap& map) {
for (ArcIt a(_graph); a != INVALID; ++a) {
_upper[_arc_idf[a]] = map[a];
}
return *this;
}
/// \brief Set the costs of the arcs.
///
/// This function sets the costs of the arcs.
/// If it is not used before calling \ref run(), the costs
/// will be set to \c 1 on all arcs.
///
/// \param map An arc map storing the costs.
/// Its \c Value type must be convertible to the \c Cost type
/// of the algorithm.
///
/// \return <tt>(*this)</tt>
template<typename CostMap>
CostScaling& costMap(const CostMap& map) {
for (ArcIt a(_graph); a != INVALID; ++a) {
_scost[_arc_idf[a]] = map[a];
_scost[_arc_idb[a]] = -map[a];
}
return *this;
}
/// \brief Set the supply values of the nodes.
///
/// This function sets the supply values of the nodes.
/// If neither this function nor \ref stSupply() is used before
/// calling \ref run(), the supply of each node will be set to zero.
///
/// \param map A node map storing the supply values.
/// Its \c Value type must be convertible to the \c Value type
/// of the algorithm.
///
/// \return <tt>(*this)</tt>
template<typename SupplyMap>
CostScaling& supplyMap(const SupplyMap& map) {
for (NodeIt n(_graph); n != INVALID; ++n) {
_supply[_node_id[n]] = map[n];
}
return *this;
}
/// \brief Set single source and target nodes and a supply value.
///
/// This function sets a single source node and a single target node
/// and the required flow value.
/// If neither this function nor \ref supplyMap() is used before
/// calling \ref run(), the supply of each node will be set to zero.
///
/// Using this function has the same effect as using \ref supplyMap()
/// with a map in which \c k is assigned to \c s, \c -k is
/// assigned to \c t and all other nodes have zero supply value.
///
/// \param s The source node.
/// \param t The target node.
/// \param k The required amount of flow from node \c s to node \c t
/// (i.e. the supply of \c s and the demand of \c t).
///
/// \return <tt>(*this)</tt>
CostScaling& stSupply(const Node& s, const Node& t, Value k) {
for (int i = 0; i != _res_node_num; ++i) {
_supply[i] = 0;
}
_supply[_node_id[s]] = k;
_supply[_node_id[t]] = -k;
return *this;
}
/// @}
/// \name Execution control
/// The algorithm can be executed using \ref run().
/// @{
/// \brief Run the algorithm.
///
/// This function runs the algorithm.
/// The paramters can be specified using functions \ref lowerMap(),
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
/// For example,
/// \code
/// CostScaling<ListDigraph> cs(graph);
/// cs.lowerMap(lower).upperMap(upper).costMap(cost)
/// .supplyMap(sup).run();
/// \endcode
///
/// This function can be called more than once. All the given parameters
/// are kept for the next call, unless \ref resetParams() or \ref reset()
/// is used, thus only the modified parameters have to be set again.
/// If the underlying digraph was also modified after the construction
/// of the class (or the last \ref reset() call), then the \ref reset()
/// function must be called.
///
/// \param method The internal method that will be used in the
/// algorithm. For more information, see \ref Method.
/// \param factor The cost scaling factor. It must be at least two.
///
/// \return \c INFEASIBLE if no feasible flow exists,
/// \n \c OPTIMAL if the problem has optimal solution
/// (i.e. it is feasible and bounded), and the algorithm has found
/// optimal flow and node potentials (primal and dual solutions),
/// \n \c UNBOUNDED if the digraph contains an arc of negative cost
/// and infinite upper bound. It means that the objective function
/// is unbounded on that arc, however, note that it could actually be
/// bounded over the feasible flows, but this algroithm cannot handle
/// these cases.
///
/// \see ProblemType, Method
/// \see resetParams(), reset()
ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 16) {
LEMON_ASSERT(factor >= 2, "The scaling factor must be at least 2");
_alpha = factor;
ProblemType pt = init();
if (pt != OPTIMAL) return pt;
start(method);
return OPTIMAL;
}
/// \brief Reset all the parameters that have been given before.
///
/// This function resets all the paramaters that have been given
/// before using functions \ref lowerMap(), \ref upperMap(),
/// \ref costMap(), \ref supplyMap(), \ref stSupply().
///
/// It is useful for multiple \ref run() calls. Basically, all the given
/// parameters are kept for the next \ref run() call, unless
/// \ref resetParams() or \ref reset() is used.
/// If the underlying digraph was also modified after the construction
/// of the class or the last \ref reset() call, then the \ref reset()
/// function must be used, otherwise \ref resetParams() is sufficient.
///
/// For example,
/// \code
/// CostScaling<ListDigraph> cs(graph);
///
/// // First run
/// cs.lowerMap(lower).upperMap(upper).costMap(cost)
/// .supplyMap(sup).run();
///
/// // Run again with modified cost map (resetParams() is not called,
/// // so only the cost map have to be set again)
/// cost[e] += 100;
/// cs.costMap(cost).run();
///
/// // Run again from scratch using resetParams()
/// // (the lower bounds will be set to zero on all arcs)
/// cs.resetParams();
/// cs.upperMap(capacity).costMap(cost)
/// .supplyMap(sup).run();
/// \endcode
///
/// \return <tt>(*this)</tt>
///
/// \see reset(), run()
CostScaling& resetParams() {
for (int i = 0; i != _res_node_num; ++i) {
_supply[i] = 0;
}
int limit = _first_out[_root];
for (int j = 0; j != limit; ++j) {
_lower[j] = 0;
_upper[j] = INF;
_scost[j] = _forward[j] ? 1 : -1;
}
for (int j = limit; j != _res_arc_num; ++j) {
_lower[j] = 0;
_upper[j] = INF;
_scost[j] = 0;
_scost[_reverse[j]] = 0;
}
_has_lower = false;
return *this;
}
/// \brief Reset the internal data structures and all the parameters
/// that have been given before.
///
/// This function resets the internal data structures and all the
/// paramaters that have been given before using functions \ref lowerMap(),
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
///
/// It is useful for multiple \ref run() calls. By default, all the given
/// parameters are kept for the next \ref run() call, unless
/// \ref resetParams() or \ref reset() is used.
/// If the underlying digraph was also modified after the construction
/// of the class or the last \ref reset() call, then the \ref reset()
/// function must be used, otherwise \ref resetParams() is sufficient.
///
/// See \ref resetParams() for examples.
///
/// \return <tt>(*this)</tt>
///
/// \see resetParams(), run()
CostScaling& reset() {
// Resize vectors
_node_num = countNodes(_graph);
_arc_num = countArcs(_graph);
_res_node_num = _node_num + 1;
_res_arc_num = 2 * (_arc_num + _node_num);
_root = _node_num;
_first_out.resize(_res_node_num + 1);
_forward.resize(_res_arc_num);
_source.resize(_res_arc_num);
_target.resize(_res_arc_num);
_reverse.resize(_res_arc_num);
_lower.resize(_res_arc_num);
_upper.resize(_res_arc_num);
_scost.resize(_res_arc_num);
_supply.resize(_res_node_num);
_res_cap.resize(_res_arc_num);
_cost.resize(_res_arc_num);
_pi.resize(_res_node_num);
_excess.resize(_res_node_num);
_next_out.resize(_res_node_num);
// Copy the graph
int i = 0, j = 0, k = 2 * _arc_num + _node_num;
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
_node_id[n] = i;
}
i = 0;
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
_first_out[i] = j;
for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
_arc_idf[a] = j;
_forward[j] = true;
_source[j] = i;
_target[j] = _node_id[_graph.runningNode(a)];
}
for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
_arc_idb[a] = j;
_forward[j] = false;
_source[j] = i;
_target[j] = _node_id[_graph.runningNode(a)];
}
_forward[j] = false;
_source[j] = i;
_target[j] = _root;
_reverse[j] = k;
_forward[k] = true;
_source[k] = _root;
_target[k] = i;
_reverse[k] = j;
++j; ++k;
}
_first_out[i] = j;
_first_out[_res_node_num] = k;
for (ArcIt a(_graph); a != INVALID; ++a) {
int fi = _arc_idf[a];
int bi = _arc_idb[a];
_reverse[fi] = bi;
_reverse[bi] = fi;
}
// Reset parameters
resetParams();
return *this;
}
/// @}
/// \name Query Functions
/// The results of the algorithm can be obtained using these
/// functions.\n
/// The \ref run() function must be called before using them.
/// @{
/// \brief Return the total cost of the found flow.
///
/// This function returns the total cost of the found flow.
/// Its complexity is O(m).
///
/// \note The return type of the function can be specified as a
/// template parameter. For example,
/// \code
/// cs.totalCost<double>();
/// \endcode
/// It is useful if the total cost cannot be stored in the \c Cost
/// type of the algorithm, which is the default return type of the
/// function.
///
/// \pre \ref run() must be called before using this function.
template <typename Number>
Number totalCost() const {
Number c = 0;
for (ArcIt a(_graph); a != INVALID; ++a) {
int i = _arc_idb[a];
c += static_cast<Number>(_res_cap[i]) *
(-static_cast<Number>(_scost[i]));
}
return c;
}
#ifndef DOXYGEN
Cost totalCost() const {
return totalCost<Cost>();
}
#endif
/// \brief Return the flow on the given arc.
///
/// This function returns the flow on the given arc.
///
/// \pre \ref run() must be called before using this function.
Value flow(const Arc& a) const {
return _res_cap[_arc_idb[a]];
}
/// \brief Copy the flow values (the primal solution) into the
/// given map.
///
/// This function copies the flow value on each arc into the given
/// map. The \c Value type of the algorithm must be convertible to
/// the \c Value type of the map.
///
/// \pre \ref run() must be called before using this function.
template <typename FlowMap>
void flowMap(FlowMap &map) const {
for (ArcIt a(_graph); a != INVALID; ++a) {
map.set(a, _res_cap[_arc_idb[a]]);
}
}
/// \brief Return the potential (dual value) of the given node.
///
/// This function returns the potential (dual value) of the
/// given node.
///
/// \pre \ref run() must be called before using this function.
Cost potential(const Node& n) const {
return static_cast<Cost>(_pi[_node_id[n]]);
}
/// \brief Copy the potential values (the dual solution) into the
/// given map.
///
/// This function copies the potential (dual value) of each node
/// into the given map.
/// The \c Cost type of the algorithm must be convertible to the
/// \c Value type of the map.
///
/// \pre \ref run() must be called before using this function.
template <typename PotentialMap>
void potentialMap(PotentialMap &map) const {
for (NodeIt n(_graph); n != INVALID; ++n) {
map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
}
}
/// @}
private:
// Initialize the algorithm
ProblemType init() {
if (_res_node_num <= 1) return INFEASIBLE;
// Check the sum of supply values
_sum_supply = 0;
for (int i = 0; i != _root; ++i) {
_sum_supply += _supply[i];
}
if (_sum_supply > 0) return INFEASIBLE;
// Check lower and upper bounds
LEMON_DEBUG(checkBoundMaps(),
"Upper bounds must be greater or equal to the lower bounds");
// Initialize vectors
for (int i = 0; i != _res_node_num; ++i) {
_pi[i] = 0;
_excess[i] = _supply[i];
}
// Remove infinite upper bounds and check negative arcs
const Value MAX = std::numeric_limits<Value>::max();
int last_out;
if (_has_lower) {
for (int i = 0; i != _root; ++i) {
last_out = _first_out[i+1];
for (int j = _first_out[i]; j != last_out; ++j) {
if (_forward[j]) {
Value c = _scost[j] < 0 ? _upper[j] : _lower[j];
if (c >= MAX) return UNBOUNDED;
_excess[i] -= c;
_excess[_target[j]] += c;
}
}
}
} else {
for (int i = 0; i != _root; ++i) {
last_out = _first_out[i+1];
for (int j = _first_out[i]; j != last_out; ++j) {
if (_forward[j] && _scost[j] < 0) {
Value c = _upper[j];
if (c >= MAX) return UNBOUNDED;
_excess[i] -= c;
_excess[_target[j]] += c;
}
}
}
}
Value ex, max_cap = 0;
for (int i = 0; i != _res_node_num; ++i) {
ex = _excess[i];
_excess[i] = 0;
if (ex < 0) max_cap -= ex;
}
for (int j = 0; j != _res_arc_num; ++j) {
if (_upper[j] >= MAX) _upper[j] = max_cap;
}
// Initialize the large cost vector and the epsilon parameter
_epsilon = 0;
LargeCost lc;
for (int i = 0; i != _root; ++i) {
last_out = _first_out[i+1];
for (int j = _first_out[i]; j != last_out; ++j) {
lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha;
_cost[j] = lc;
if (lc > _epsilon) _epsilon = lc;
}
}
_epsilon /= _alpha;
// Initialize maps for Circulation and remove non-zero lower bounds
ConstMap<Arc, Value> low(0);
typedef typename Digraph::template ArcMap<Value> ValueArcMap;
typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
ValueArcMap cap(_graph), flow(_graph);
ValueNodeMap sup(_graph);
for (NodeIt n(_graph); n != INVALID; ++n) {
sup[n] = _supply[_node_id[n]];
}
if (_has_lower) {
for (ArcIt a(_graph); a != INVALID; ++a) {
int j = _arc_idf[a];
Value c = _lower[j];
cap[a] = _upper[j] - c;
sup[_graph.source(a)] -= c;
sup[_graph.target(a)] += c;
}
} else {
for (ArcIt a(_graph); a != INVALID; ++a) {
cap[a] = _upper[_arc_idf[a]];
}
}
_sup_node_num = 0;
for (NodeIt n(_graph); n != INVALID; ++n) {
if (sup[n] > 0) ++_sup_node_num;
}
// Find a feasible flow using Circulation
Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
circ(_graph, low, cap, sup);
if (!circ.flowMap(flow).run()) return INFEASIBLE;
// Set residual capacities and handle GEQ supply type
if (_sum_supply < 0) {
for (ArcIt a(_graph); a != INVALID; ++a) {
Value fa = flow[a];
_res_cap[_arc_idf[a]] = cap[a] - fa;
_res_cap[_arc_idb[a]] = fa;
sup[_graph.source(a)] -= fa;
sup[_graph.target(a)] += fa;
}
for (NodeIt n(_graph); n != INVALID; ++n) {
_excess[_node_id[n]] = sup[n];
}
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
int u = _target[a];
int ra = _reverse[a];
_res_cap[a] = -_sum_supply + 1;
_res_cap[ra] = -_excess[u];
_cost[a] = 0;
_cost[ra] = 0;
_excess[u] = 0;
}
} else {
for (ArcIt a(_graph); a != INVALID; ++a) {
Value fa = flow[a];
_res_cap[_arc_idf[a]] = cap[a] - fa;
_res_cap[_arc_idb[a]] = fa;
}
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
int ra = _reverse[a];
_res_cap[a] = 0;
_res_cap[ra] = 0;
_cost[a] = 0;
_cost[ra] = 0;
}
}
// Initialize data structures for buckets
_max_rank = _alpha * _res_node_num;
_buckets.resize(_max_rank);
_bucket_next.resize(_res_node_num + 1);
_bucket_prev.resize(_res_node_num + 1);
_rank.resize(_res_node_num + 1);
return OPTIMAL;
}
// Check if the upper bound is greater than or equal to the lower bound
// on each forward arc.
bool checkBoundMaps() {
for (int j = 0; j != _res_arc_num; ++j) {
if (_forward[j] && _upper[j] < _lower[j]) return false;
}
return true;
}
// Execute the algorithm and transform the results
void start(Method method) {
const int MAX_PARTIAL_PATH_LENGTH = 4;
switch (method) {
case PUSH:
startPush();
break;
case AUGMENT:
startAugment(_res_node_num - 1);
break;
case PARTIAL_AUGMENT:
startAugment(MAX_PARTIAL_PATH_LENGTH);
break;
}
// Compute node potentials (dual solution)
for (int i = 0; i != _res_node_num; ++i) {
_pi[i] = static_cast<Cost>(_pi[i] / (_res_node_num * _alpha));
}
bool optimal = true;
for (int i = 0; optimal && i != _res_node_num; ++i) {
LargeCost pi_i = _pi[i];
int last_out = _first_out[i+1];
for (int j = _first_out[i]; j != last_out; ++j) {
if (_res_cap[j] > 0 && _scost[j] + pi_i - _pi[_target[j]] < 0) {
optimal = false;
break;
}
}
}
if (!optimal) {
// Compute node potentials for the original costs with BellmanFord
// (if it is necessary)
typedef std::pair<int, int> IntPair;
StaticDigraph sgr;
std::vector<IntPair> arc_vec;
std::vector<LargeCost> cost_vec;
LargeCostArcMap cost_map(cost_vec);
arc_vec.clear();
cost_vec.clear();
for (int j = 0; j != _res_arc_num; ++j) {
if (_res_cap[j] > 0) {
int u = _source[j], v = _target[j];
arc_vec.push_back(IntPair(u, v));
cost_vec.push_back(_scost[j] + _pi[u] - _pi[v]);
}
}
sgr.build(_res_node_num, arc_vec.begin(), arc_vec.end());
typename BellmanFord<StaticDigraph, LargeCostArcMap>::Create
bf(sgr, cost_map);
bf.init(0);
bf.start();
for (int i = 0; i != _res_node_num; ++i) {
_pi[i] += bf.dist(sgr.node(i));
}
}
// Shift potentials to meet the requirements of the GEQ type
// optimality conditions
LargeCost max_pot = _pi[_root];
for (int i = 0; i != _res_node_num; ++i) {
if (_pi[i] > max_pot) max_pot = _pi[i];
}
if (max_pot != 0) {
for (int i = 0; i != _res_node_num; ++i) {
_pi[i] -= max_pot;
}
}
// Handle non-zero lower bounds
if (_has_lower) {
int limit = _first_out[_root];
for (int j = 0; j != limit; ++j) {
if (_forward[j]) _res_cap[_reverse[j]] += _lower[j];
}
}
}
// Initialize a cost scaling phase
void initPhase() {
// Saturate arcs not satisfying the optimality condition
for (int u = 0; u != _res_node_num; ++u) {
int last_out = _first_out[u+1];
LargeCost pi_u = _pi[u];
for (int a = _first_out[u]; a != last_out; ++a) {
Value delta = _res_cap[a];
if (delta > 0) {
int v = _target[a];
if (_cost[a] + pi_u - _pi[v] < 0) {
_excess[u] -= delta;
_excess[v] += delta;
_res_cap[a] = 0;
_res_cap[_reverse[a]] += delta;
}
}
}
}
// Find active nodes (i.e. nodes with positive excess)
for (int u = 0; u != _res_node_num; ++u) {
if (_excess[u] > 0) _active_nodes.push_back(u);
}
// Initialize the next arcs
for (int u = 0; u != _res_node_num; ++u) {
_next_out[u] = _first_out[u];
}
}
// Price (potential) refinement heuristic
bool priceRefinement() {
// Stack for stroing the topological order
IntVector stack(_res_node_num);
int stack_top;
// Perform phases
while (topologicalSort(stack, stack_top)) {
// Compute node ranks in the acyclic admissible network and
// store the nodes in buckets
for (int i = 0; i != _res_node_num; ++i) {
_rank[i] = 0;
}
const int bucket_end = _root + 1;
for (int r = 0; r != _max_rank; ++r) {
_buckets[r] = bucket_end;
}
int top_rank = 0;
for ( ; stack_top >= 0; --stack_top) {
int u = stack[stack_top], v;
int rank_u = _rank[u];
LargeCost rc, pi_u = _pi[u];
int last_out = _first_out[u+1];
for (int a = _first_out[u]; a != last_out; ++a) {
if (_res_cap[a] > 0) {
v = _target[a];
rc = _cost[a] + pi_u - _pi[v];
if (rc < 0) {
LargeCost nrc = static_cast<LargeCost>((-rc - 0.5) / _epsilon);
if (nrc < LargeCost(_max_rank)) {
int new_rank_v = rank_u + static_cast<int>(nrc);
if (new_rank_v > _rank[v]) {
_rank[v] = new_rank_v;
}
}
}
}
}
if (rank_u > 0) {
top_rank = std::max(top_rank, rank_u);
int bfirst = _buckets[rank_u];
_bucket_next[u] = bfirst;
_bucket_prev[bfirst] = u;
_buckets[rank_u] = u;
}
}
// Check if the current flow is epsilon-optimal
if (top_rank == 0) {
return true;
}
// Process buckets in top-down order
for (int rank = top_rank; rank > 0; --rank) {
while (_buckets[rank] != bucket_end) {
// Remove the first node from the current bucket
int u = _buckets[rank];
_buckets[rank] = _bucket_next[u];
// Search the outgoing arcs of u
LargeCost rc, pi_u = _pi[u];
int last_out = _first_out[u+1];
int v, old_rank_v, new_rank_v;
for (int a = _first_out[u]; a != last_out; ++a) {
if (_res_cap[a] > 0) {
v = _target[a];
old_rank_v = _rank[v];
if (old_rank_v < rank) {
// Compute the new rank of node v
rc = _cost[a] + pi_u - _pi[v];
if (rc < 0) {
new_rank_v = rank;
} else {
LargeCost nrc = rc / _epsilon;
new_rank_v = 0;
if (nrc < LargeCost(_max_rank)) {
new_rank_v = rank - 1 - static_cast<int>(nrc);
}
}
// Change the rank of node v
if (new_rank_v > old_rank_v) {
_rank[v] = new_rank_v;
// Remove v from its old bucket
if (old_rank_v > 0) {
if (_buckets[old_rank_v] == v) {
_buckets[old_rank_v] = _bucket_next[v];
} else {
int pv = _bucket_prev[v], nv = _bucket_next[v];
_bucket_next[pv] = nv;
_bucket_prev[nv] = pv;
}
}
// Insert v into its new bucket
int nv = _buckets[new_rank_v];
_bucket_next[v] = nv;
_bucket_prev[nv] = v;
_buckets[new_rank_v] = v;
}
}
}
}
// Refine potential of node u
_pi[u] -= rank * _epsilon;
}
}
}
return false;
}
// Find and cancel cycles in the admissible network and
// determine topological order using DFS
bool topologicalSort(IntVector &stack, int &stack_top) {
const int MAX_CYCLE_CANCEL = 1;
BoolVector reached(_res_node_num, false);
BoolVector processed(_res_node_num, false);
IntVector pred(_res_node_num);
for (int i = 0; i != _res_node_num; ++i) {
_next_out[i] = _first_out[i];
}
stack_top = -1;
int cycle_cnt = 0;
for (int start = 0; start != _res_node_num; ++start) {
if (reached[start]) continue;
// Start DFS search from this start node
pred[start] = -1;
int tip = start, v;
while (true) {
// Check the outgoing arcs of the current tip node
reached[tip] = true;
LargeCost pi_tip = _pi[tip];
int a, last_out = _first_out[tip+1];
for (a = _next_out[tip]; a != last_out; ++a) {
if (_res_cap[a] > 0) {
v = _target[a];
if (_cost[a] + pi_tip - _pi[v] < 0) {
if (!reached[v]) {
// A new node is reached
reached[v] = true;
pred[v] = tip;
_next_out[tip] = a;
tip = v;
a = _next_out[tip];
last_out = _first_out[tip+1];
break;
}
else if (!processed[v]) {
// A cycle is found
++cycle_cnt;
_next_out[tip] = a;
// Find the minimum residual capacity along the cycle
Value d, delta = _res_cap[a];
int u, delta_node = tip;
for (u = tip; u != v; ) {
u = pred[u];
d = _res_cap[_next_out[u]];
if (d <= delta) {
delta = d;
delta_node = u;
}
}
// Augment along the cycle
_res_cap[a] -= delta;
_res_cap[_reverse[a]] += delta;
for (u = tip; u != v; ) {
u = pred[u];
int ca = _next_out[u];
_res_cap[ca] -= delta;
_res_cap[_reverse[ca]] += delta;
}
// Check the maximum number of cycle canceling
if (cycle_cnt >= MAX_CYCLE_CANCEL) {
return false;
}
// Roll back search to delta_node
if (delta_node != tip) {
for (u = tip; u != delta_node; u = pred[u]) {
reached[u] = false;
}
tip = delta_node;
a = _next_out[tip] + 1;
last_out = _first_out[tip+1];
break;
}
}
}
}
}
// Step back to the previous node
if (a == last_out) {
processed[tip] = true;
stack[++stack_top] = tip;
tip = pred[tip];
if (tip < 0) {
// Finish DFS from the current start node
break;
}
++_next_out[tip];
}
}
}
return (cycle_cnt == 0);
}
// Global potential update heuristic
void globalUpdate() {
const int bucket_end = _root + 1;
// Initialize buckets
for (int r = 0; r != _max_rank; ++r) {
_buckets[r] = bucket_end;
}
Value total_excess = 0;
int b0 = bucket_end;
for (int i = 0; i != _res_node_num; ++i) {
if (_excess[i] < 0) {
_rank[i] = 0;
_bucket_next[i] = b0;
_bucket_prev[b0] = i;
b0 = i;
} else {
total_excess += _excess[i];
_rank[i] = _max_rank;
}
}
if (total_excess == 0) return;
_buckets[0] = b0;
// Search the buckets
int r = 0;
for ( ; r != _max_rank; ++r) {
while (_buckets[r] != bucket_end) {
// Remove the first node from the current bucket
int u = _buckets[r];
_buckets[r] = _bucket_next[u];
// Search the incoming arcs of u
LargeCost pi_u = _pi[u];
int last_out = _first_out[u+1];
for (int a = _first_out[u]; a != last_out; ++a) {
int ra = _reverse[a];
if (_res_cap[ra] > 0) {
int v = _source[ra];
int old_rank_v = _rank[v];
if (r < old_rank_v) {
// Compute the new rank of v
LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon;
int new_rank_v = old_rank_v;
if (nrc < LargeCost(_max_rank)) {
new_rank_v = r + 1 + static_cast<int>(nrc);
}
// Change the rank of v
if (new_rank_v < old_rank_v) {
_rank[v] = new_rank_v;
_next_out[v] = _first_out[v];
// Remove v from its old bucket
if (old_rank_v < _max_rank) {
if (_buckets[old_rank_v] == v) {
_buckets[old_rank_v] = _bucket_next[v];
} else {
int pv = _bucket_prev[v], nv = _bucket_next[v];
_bucket_next[pv] = nv;
_bucket_prev[nv] = pv;
}
}
// Insert v into its new bucket
int nv = _buckets[new_rank_v];
_bucket_next[v] = nv;
_bucket_prev[nv] = v;
_buckets[new_rank_v] = v;
}
}
}
}
// Finish search if there are no more active nodes
if (_excess[u] > 0) {
total_excess -= _excess[u];
if (total_excess <= 0) break;
}
}
if (total_excess <= 0) break;
}
// Relabel nodes
for (int u = 0; u != _res_node_num; ++u) {
int k = std::min(_rank[u], r);
if (k > 0) {
_pi[u] -= _epsilon * k;
_next_out[u] = _first_out[u];
}
}
}
/// Execute the algorithm performing augment and relabel operations
void startAugment(int max_length) {
// Paramters for heuristics
const int PRICE_REFINEMENT_LIMIT = 2;
const double GLOBAL_UPDATE_FACTOR = 1.0;
const int global_update_skip = static_cast<int>(GLOBAL_UPDATE_FACTOR *
(_res_node_num + _sup_node_num * _sup_node_num));
int next_global_update_limit = global_update_skip;
// Perform cost scaling phases
IntVector path;
BoolVector path_arc(_res_arc_num, false);
int relabel_cnt = 0;
int eps_phase_cnt = 0;
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
1 : _epsilon / _alpha )
{
++eps_phase_cnt;
// Price refinement heuristic
if (eps_phase_cnt >= PRICE_REFINEMENT_LIMIT) {
if (priceRefinement()) continue;
}
// Initialize current phase
initPhase();
// Perform partial augment and relabel operations
while (true) {
// Select an active node (FIFO selection)
while (_active_nodes.size() > 0 &&
_excess[_active_nodes.front()] <= 0) {
_active_nodes.pop_front();
}
if (_active_nodes.size() == 0) break;
int start = _active_nodes.front();
// Find an augmenting path from the start node
int tip = start;
while (int(path.size()) < max_length && _excess[tip] >= 0) {
int u;
LargeCost rc, min_red_cost = std::numeric_limits<LargeCost>::max();
LargeCost pi_tip = _pi[tip];
int last_out = _first_out[tip+1];
for (int a = _next_out[tip]; a != last_out; ++a) {
if (_res_cap[a] > 0) {
u = _target[a];
rc = _cost[a] + pi_tip - _pi[u];
if (rc < 0) {
path.push_back(a);
_next_out[tip] = a;
if (path_arc[a]) {
goto augment; // a cycle is found, stop path search
}
tip = u;
path_arc[a] = true;
goto next_step;
}
else if (rc < min_red_cost) {
min_red_cost = rc;
}
}
}
// Relabel tip node
if (tip != start) {
int ra = _reverse[path.back()];
min_red_cost =
std::min(min_red_cost, _cost[ra] + pi_tip - _pi[_target[ra]]);
}
last_out = _next_out[tip];
for (int a = _first_out[tip]; a != last_out; ++a) {
if (_res_cap[a] > 0) {
rc = _cost[a] + pi_tip - _pi[_target[a]];
if (rc < min_red_cost) {
min_red_cost = rc;
}
}
}
_pi[tip] -= min_red_cost + _epsilon;
_next_out[tip] = _first_out[tip];
++relabel_cnt;
// Step back
if (tip != start) {
int pa = path.back();
path_arc[pa] = false;
tip = _source[pa];
path.pop_back();
}
next_step: ;
}
// Augment along the found path (as much flow as possible)
augment:
Value delta;
int pa, u, v = start;
for (int i = 0; i != int(path.size()); ++i) {
pa = path[i];
u = v;
v = _target[pa];
path_arc[pa] = false;
delta = std::min(_res_cap[pa], _excess[u]);
_res_cap[pa] -= delta;
_res_cap[_reverse[pa]] += delta;
_excess[u] -= delta;
_excess[v] += delta;
if (_excess[v] > 0 && _excess[v] <= delta) {
_active_nodes.push_back(v);
}
}
path.clear();
// Global update heuristic
if (relabel_cnt >= next_global_update_limit) {
globalUpdate();
next_global_update_limit += global_update_skip;
}
}
}
}
/// Execute the algorithm performing push and relabel operations
void startPush() {
// Paramters for heuristics
const int PRICE_REFINEMENT_LIMIT = 2;
const double GLOBAL_UPDATE_FACTOR = 2.0;
const int global_update_skip = static_cast<int>(GLOBAL_UPDATE_FACTOR *
(_res_node_num + _sup_node_num * _sup_node_num));
int next_global_update_limit = global_update_skip;
// Perform cost scaling phases
BoolVector hyper(_res_node_num, false);
LargeCostVector hyper_cost(_res_node_num);
int relabel_cnt = 0;
int eps_phase_cnt = 0;
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
1 : _epsilon / _alpha )
{
++eps_phase_cnt;
// Price refinement heuristic
if (eps_phase_cnt >= PRICE_REFINEMENT_LIMIT) {
if (priceRefinement()) continue;
}
// Initialize current phase
initPhase();
// Perform push and relabel operations
while (_active_nodes.size() > 0) {
LargeCost min_red_cost, rc, pi_n;
Value delta;
int n, t, a, last_out = _res_arc_num;
next_node:
// Select an active node (FIFO selection)
n = _active_nodes.front();
last_out = _first_out[n+1];
pi_n = _pi[n];
// Perform push operations if there are admissible arcs
if (_excess[n] > 0) {
for (a = _next_out[n]; a != last_out; ++a) {
if (_res_cap[a] > 0 &&
_cost[a] + pi_n - _pi[_target[a]] < 0) {
delta = std::min(_res_cap[a], _excess[n]);
t = _target[a];
// Push-look-ahead heuristic
Value ahead = -_excess[t];
int last_out_t = _first_out[t+1];
LargeCost pi_t = _pi[t];
for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
if (_res_cap[ta] > 0 &&
_cost[ta] + pi_t - _pi[_target[ta]] < 0)
ahead += _res_cap[ta];
if (ahead >= delta) break;
}
if (ahead < 0) ahead = 0;
// Push flow along the arc
if (ahead < delta && !hyper[t]) {
_res_cap[a] -= ahead;
_res_cap[_reverse[a]] += ahead;
_excess[n] -= ahead;
_excess[t] += ahead;
_active_nodes.push_front(t);
hyper[t] = true;
hyper_cost[t] = _cost[a] + pi_n - pi_t;
_next_out[n] = a;
goto next_node;
} else {
_res_cap[a] -= delta;
_res_cap[_reverse[a]] += delta;
_excess[n] -= delta;
_excess[t] += delta;
if (_excess[t] > 0 && _excess[t] <= delta)
_active_nodes.push_back(t);
}
if (_excess[n] == 0) {
_next_out[n] = a;
goto remove_nodes;
}
}
}
_next_out[n] = a;
}
// Relabel the node if it is still active (or hyper)
if (_excess[n] > 0 || hyper[n]) {
min_red_cost = hyper[n] ? -hyper_cost[n] :
std::numeric_limits<LargeCost>::max();
for (int a = _first_out[n]; a != last_out; ++a) {
if (_res_cap[a] > 0) {
rc = _cost[a] + pi_n - _pi[_target[a]];
if (rc < min_red_cost) {
min_red_cost = rc;
}
}
}
_pi[n] -= min_red_cost + _epsilon;
_next_out[n] = _first_out[n];
hyper[n] = false;
++relabel_cnt;
}
// Remove nodes that are not active nor hyper
remove_nodes:
while ( _active_nodes.size() > 0 &&
_excess[_active_nodes.front()] <= 0 &&
!hyper[_active_nodes.front()] ) {
_active_nodes.pop_front();
}
// Global update heuristic
if (relabel_cnt >= next_global_update_limit) {
globalUpdate();
for (int u = 0; u != _res_node_num; ++u)
hyper[u] = false;
next_global_update_limit += global_update_skip;
}
}
}
}
}; //class CostScaling
///@}
} //namespace lemon
#endif //LEMON_COST_SCALING_H
|